Mathematics > Category Theory
[Submitted on 12 May 2020 (v1), last revised 4 Feb 2021 (this version, v2)]
Title:Double Categories of Open Dynamical Systems (Extended Abstract)
View PDFAbstract:A (closed) dynamical system is a notion of how things can be, together with a notion of how they may change given how they are. The idea and mathematics of closed dynamical systems has proven incredibly useful in those sciences that can isolate their object of study from its environment. But many changing situations in the world cannot be meaningfully isolated from their environment - a cell will die if it is removed from everything beyond its walls. To study systems that interact with their environment, and to design such systems in a modular way, we need a robust theory of open dynamical systems.
In this extended abstract, we put forward a general definition of open dynamical system. We define two general sorts of morphisms between these systems: covariant morphisms which include trajectories, steady states, and periodic orbits; and contravariant morphisms which allow for plugging variables of some systems into parameters of other systems. We define an indexed double category of open dynamical systems indexed by their interface and use a double Grothendieck construction to construct a double category of open dynamical systems.
In our main theorem, we construct covariantly representable indexed double functors from the indexed double category of dynamical systems to an indexed double category of spans. This shows that all covariantly representable structures of dynamical systems - including trajectories, steady states, and periodic orbits - compose according to the laws of matrix arithmetic.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 12 May 2020 17:56:31 UTC (131 KB)
[v2] Thu, 4 Feb 2021 02:21:46 UTC (136 KB)
Current browse context:
math.CT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.