Computer Science > Computer Science and Game Theory
[Submitted on 22 Jul 2019]
Title:A Conceptually Well-Founded Characterization of Iterated Admissibility Using an "All I Know" Operator
View PDFAbstract:Brandenburger, Friedenberg, and Keisler provide an epistemic characterization of iterated admissibility (IA), also known as iterated deletion of weakly dominated strategies, where uncertainty is represented using LPSs (lexicographic probability sequences). Their characterization holds in a rich structure called a complete structure, where all types are possible. In earlier work, we gave a characterization of iterated admissibility using an "all I know" operator, that captures the intuition that "all the agent knows" is that agents satisfy the appropriate rationality assumptions. That characterization did not need complete structures and used probability structures, not LPSs. However, that characterization did not deal with Samuelson's conceptual concern regarding IA, namely, that at higher levels, players do not consider possible strategies that were used to justify their choice of strategy at lower levels. In this paper, we give a characterization of IA using the all I know operator that does deal with Samuelson's concern. However, it uses LPSs. We then show how to modify the characterization using notions of "approximate belief" and "approximately all I know" so as to deal with Samuelson's concern while still working with probability structures.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Mon, 22 Jul 2019 03:16:38 UTC (96 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.