Computer Science > Computation and Language
[Submitted on 26 Feb 2013]
Title:Non-simplifying Graph Rewriting Termination
View PDFAbstract:So far, a very large amount of work in Natural Language Processing (NLP) rely on trees as the core mathematical structure to represent linguistic informations (e.g. in Chomsky's work). However, some linguistic phenomena do not cope properly with trees. In a former paper, we showed the benefit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on those structures. Justified by some linguistic considerations, graph rewriting is characterized by two features: first, there is no node creation along computations and second, there are non-local edge modifications. Under these hypotheses, we show that uniform termination is undecidable and that non-uniform termination is decidable. We describe two termination techniques based on weights and we give complexity bound on the derivation length for these rewriting system.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 26 Feb 2013 06:50:08 UTC (204 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.