References
- C. Bi and V. Ginting, Two-grid finite volume element method for linear and nonlinear elliptic problems, Numer. Math. 108 (2007), no. 2, 177-198. https://doi.org/10.1007/s00211-007-0115-9
- S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
-
Z. Chen,
$L^p$ -posteriori error analysis of mixed methods for linear and quasilinear elliptic problems, Modeling, mesh generation, and adaptive numerical methods for partial differential equations (Minneapolis, MN, 1993), 187-199, IMA Vol. Math. Appl., 75, Springer, New York, 1995. - Z. Chen and J. Douglas, Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160.
- Y. Chen, Y. Huang, and D. Yu, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Internat. J. Numer. Methods Engrg. 57 (2003), no. 2, 193-209. https://doi.org/10.1002/nme.668
- C. Chen, S. Larsson, and N. Zhang, Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation, IMA J. Numer. Anal. 9 (1989), no. 4, 507-524. https://doi.org/10.1093/imanum/9.4.507
- I. Christie, D. F. Griffiths, A. R. Mitchell, and J. M. Sanz-Serna, Product approximation for nonlinear problems in the finite element method, IMA J. Numer. Anal. 1 (1981), no. 3, 253-266. https://doi.org/10.1093/imanum/1.3.253
- P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
- C. Dawson and M. F. Wheeler, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), 191-203, Contemp. Math., 180, Amer. Math. Soc., Providence, RI, 1994.
- J. Douglas, Jr. and J. E. Roberts, Global Estimates for Mixed Methods for second Order Elliptic Equations, Math. Comp. 44 (1985), no. 169, 39-52. https://doi.org/10.1090/S0025-5718-1985-0771029-9
- J. Douglas, Jr. and T. Dupont, The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures, Math. Comp. 20 (1975), no. 130, 360-389.
- J. Douglas, Jr., T. Dupont, and R. E. Ewing, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979), no. 3, 503-522. https://doi.org/10.1137/0716039
- J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numer. 17 (1983), no. 1, 17-33. https://doi.org/10.1051/m2an/1983170100171
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, 2004.
- J. Jin, S. Shu, and J. Xu, A two-grid discretization method for decoupling systems of partial differential equations, Math. Comp. 75 (2006), no. 256, 1617-1626. https://doi.org/10.1090/S0025-5718-06-01869-2
- S. Larsson, V. Thomee, and N. Zhang, Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation, Math. Meth. Appl. Sci. 11 (1989), no. 1, 105-124. https://doi.org/10.1002/mma.1670110108
- W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput. 69 (1995), no. 2-3, 263-274. https://doi.org/10.1016/0096-3003(94)00134-P
- D. Kim and E.-J. Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349. https://doi.org/10.1002/num.20178
- D. Kim and E.-J. Park, A Priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 1186-1207. https://doi.org/10.1137/090747002
- M.-Y. Kim, F. A. Milner, and E.-J. Park, Some observations on mixed methods for fully nonlinear parabolic problems in divergence form, Appl. Math. Lett. 9 (1996), no. 1, 75-81.
- M.-Y. Kim, E.-J. Park, S. G. Thomas, and M. F. Wheeler, A multiscale mortar mixed finite element method for slightly compressible flows in porous media, J. Korean Math. Soc. 44 (2007), no. 5, 1103-1119. https://doi.org/10.4134/JKMS.2007.44.5.1103
- F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), no. 211, 973-988. https://doi.org/10.1090/S0025-5718-1995-1303087-3
- E.-J. Park, Mixed finite element methods for nonlinear second order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, 865-885. https://doi.org/10.1137/0732040
- P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), 292-315. Lecture Notes in Math. 606, Springer, Berlin, 1977.
- J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, Vol. II, 523-639, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991.
- T. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, 35-106, R. E. Ewing, ed., Frontiers in Applied Mathematics 1, Society for Industrial and Applied Mathematics, Philadelphia, 1984.
- J. M. Sanz-Serna and L. Abia, Interpolation of the coefficients in nonlinear elliptic Galerkin procedures, SIAM J. Numer. Anal. 21 (1984), no. 1, 77-83. https://doi.org/10.1137/0721004
- A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal. 25 (1988), no. 2, 351-375. https://doi.org/10.1137/0725025
- L. Wu and M. B. Allen, A two-grid method for mixed finite-element solution of reaction-diffusion equations, Numer. Methods Partial Differential Equations 15 (1999), no. 3, 317-332. https://doi.org/10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
- J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15 (1994), no. 1, 231-237. https://doi.org/10.1137/0915016
- J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996), no. 5, 1759-1777. https://doi.org/10.1137/S0036142992232949
Cited by
- Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation vol.310, 2017, https://doi.org/10.1016/j.amc.2017.04.010
- C 0 -discontinuous Galerkin methods for a wind-driven ocean circulation model: Two-grid algorithm 2017, https://doi.org/10.1016/j.cma.2017.08.034
- A new approach of superconvergence analysis of a low order nonconforming MFEM for reaction–diffusion equation vol.2018, pp.1, 2018, https://doi.org/10.1186/s13661-018-1091-y
- Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations vol.77, pp.3, 2018, https://doi.org/10.1007/s10915-018-0643-8
- A unified framework for two-grid methods for a class of nonlinear problems vol.55, pp.4, 2018, https://doi.org/10.1007/s10092-018-0287-y
- Interpolatory HDG Method for Parabolic Semilinear PDEs pp.1573-7691, 2019, https://doi.org/10.1007/s10915-019-00911-8