Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach | IGI Global Scientific Publishing
Reference Hub2
Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach

Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach

R. Rathipriya (Periyar University, India), K. Thangavel (Periyar University, India), and J. Bagyamani (Government Arts College, India)
Copyright: © 2011 |Volume: 2 |Issue: 3 |Pages: 11
ISSN: 1947-8283|EISSN: 1947-8291|EISBN13: 9781613505694|DOI: 10.4018/jamc.2011070104
Cite Article Cite Article

MLA

Rathipriya, R., et al. "Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach." IJAMC vol.2, no.3 2011: pp.69-79. https://doi.org/10.4018/jamc.2011070104

APA

Rathipriya, R., Thangavel, K., & Bagyamani, J. (2011). Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach. International Journal of Applied Metaheuristic Computing (IJAMC), 2(3), 69-79. https://doi.org/10.4018/jamc.2011070104

Chicago

Rathipriya, R., K. Thangavel, and J. Bagyamani. "Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach," International Journal of Applied Metaheuristic Computing (IJAMC) 2, no.3: 69-79. https://doi.org/10.4018/jamc.2011070104

Export Reference

Mendeley
Favorite Full-Issue Download

Abstract

Data mining extracts hidden information from a database that the user did not know existed. Biclustering is one of the data mining technique which helps marketing user to target marketing campaigns more accurately and to align campaigns more closely with the needs, wants, and attitudes of customers and prospects. The biclustering results can be tuned to find users’ browsing patterns relevant to current business problems. This paper presents a new application of biclustering to web usage data using a combination of heuristics and meta-heuristics algorithms. Two-way K-means clustering is used to generate the seeds from preprocessed web usage data, Greedy Heuristic is used iteratively to refine a set of seeds, which is fast but often yield local optimal solutions. In this paper, Genetic Algorithm is used as a global optimizer that can be coupled with greedy method to identify the global optimal target user groups based on their coherent browsing pattern. The performance of the proposed work is evaluated by conducting experiment on the msnbc, a clickstream dataset from UCI repository. Results show that the proposed work performs well in extracting optimal target users groups from the web usage data which can be used for focalized marketing campaigns.

Request Access

You do not own this content. Please login to recommend this title to your institution's librarian or purchase it from the IGI Global Scientific Publishing bookstore.