In this paper, we consider the ring of matrices $ \mathcal{A} $ of order $ 2 $ over the ring $ \mathbb{F}_2 [u] / \langle u^k \rangle $, where $ u $ is an indeterminate with $ u^k = 0 $, i.e. $ \mathcal{A} = M_2 ( \mathbb{F}_2 [u] / \langle u^k \rangle) $. We derive the structure theorem for cyclic codes of odd length $ n $ over the ring $ \mathcal{A} $ with the help of isometry map from $ \mathcal{A} $ to $ \mathbb{F}_4 [u, v] / \langle u^k, v^2, u v - v u \rangle $, where $ v $ is an indeterminate satisfying $ v^2 = 0 $ and $ u v = v u $. We define a map $ \theta $ which takes the linear codes of odd length $ n $ over $ \mathcal{A} $ to linear codes of even length $ 2 k n $ over $ \mathbb{F}_4 $. We also define a weight on the ring $ \mathcal{A} $ which is an extension of the weight defined over the ring $ M_2 ( \mathbb{F}_2) $. An example is also given as applications to construct the linear codes of odd length $ n $ over $ \mathcal{A} $.
Citation: |
[1] | A. Alahmadi, H. Sboui, P. Sol$\acute{ \text{e}}$ and O. Yemen, Cyclic codes over $M_2 (\mathbb{F}_2)$, Journal of the Franklin Institute, 350 (2013), 2837-2847. doi: 10.1016/j.jfranklin.2013.06.023. |
[2] | C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119. doi: 10.1006/jcta.1996.2763. |
[3] | A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $ \mathbb{F}_2 + u \mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255. doi: 10.1109/18.761278. |
[4] | A. R. Calderbank, A. R. Hammons, P. V. Kumar, N. J. Sloane and P. Sol$\acute{ \text{e}}$, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 218-222. doi: 10.1090/S0273-0979-1993-00426-9. |
[5] | H. Q. Dinh, A. K. Singh, P. Kumar and S. Sriboonchitta, On the structure of cyclic codes over the ring $ \mathbb{Z}_{2^s} [u] / \langle u^k \rangle$, Discrete Math., 341 (2018), 2243-2275. doi: 10.1016/j.disc.2018.04.028. |
[6] | S. T. Dougherty, B. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219. doi: 10.1016/j.ffa.2010.11.002. |
[7] | D. F. Falcunit and V. P. Sison, Cyclic codes over the matrix ring $M_2 (\mathbb{F}_p)$ and their isometric images over $ \mathbb{F}_{p^2} + u \mathbb{F}_{p^2}$, 23th International Zurich Seminar on Communications, IZS, ETH-Z$\ddot{ \text{u}}$rich, (2014). |
[8] | B. Ghosh and P. K. Kewat, Cyclic codes over the rings $ \mathbb{F}_p [u, v] / \langle u^k, v^2, u v - v u \rangle$, preprint, (2015), arXiv: 1508.07034. |
[9] | M. Greferath and S. E. Schmidt, Linear codes and rings of matrices, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 1719 (1999), 160-169. doi: 10.1007/3-540-46796-3_16. |
[10] | A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. Sloane and P. Sol$\acute{ \text{e}}$, The $ \mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319. doi: 10.1109/18.312154. |
[11] | W. C. Huffman, On the decomposition of self-dual codes over $ \mathbb{F}_2 + u \mathbb{F}_2$ with an automorphism of odd prime order, Finite Fields Appl., 13 (2007), 681-712. doi: 10.1016/j.ffa.2006.02.003. |
[12] | X. Kai, S. Zhu and L. Wang, A family of constacyclic codes over $ \mathbb{F}_2+ u \mathbb{F}_2+ v \mathbb{F}_2+ uv \mathbb{F}_2 $, J. Syst. Sci. Complex., 25 (2012), 1032-1040. doi: 10.1007/s11424-012-1001-9. |
[13] | R. Luo and U. Parampalli, Cyclic codes over $M_2 (\mathbb{F}_2 + u \mathbb{F}_2)$, Cryptogr. Commun., 10 (2018), 1109-1117. doi: 10.1007/s12095-017-0266-1. |
[14] | A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl., 1 (1991), 365-384. doi: 10.1515/dma.1991.1.4.365. |
[15] | F. Oggier, P. Sol$\acute{ \text{e}}$ and J.-C. Belfiore, Codes over matrix rings for space-time coded modulations, IEEE Trans. Inform. Theory, 58 (2012), 734-746. doi: 10.1109/TIT.2011.2173732. |
[16] | O. Ore, Theory of non-commutative polynomials, Ann. of Math., 34 (1933), 480-508. doi: 10.2307/1968173. |
[17] | I. Siap, Linear codes over $ \mathbb{F}_2 + u \mathbb{F}_2$ and their complete weight enumerators, Codes and Designs, Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 10 (2002), 259-271. doi: 10.1515/9783110198119.259. |
[18] | P. Udaya and A. Bonnecaze, Decoding of cyclic codes over $ \mathbb{F}_2 + u \mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 2148-2157. doi: 10.1109/18.782165. |
[19] | B. Yildiz and S. Karadeniz, Cyclic codes over $ \mathbb{F}_2+ u \mathbb{F}_2+ v \mathbb{F}_2+ uv \mathbb{F}_2 $, Des. Codes Cryptogr., 58 (2011), 221-234. doi: 10.1007/s10623-010-9399-3. |
[20] | B. Yildiz and S. Karadeniz, Linear codes over $ \mathbb{F}_2+ u \mathbb{F}_2+ v \mathbb{F}_2+ uv \mathbb{F}_2 $, Des. Codes Cryptogr., 54 (2010), 61-81. doi: 10.1007/s10623-009-9309-8. |
[21] | H. Yu, S. Zhu and X. Kai, $(1 - u v)$-constacyclic codes over $ \mathbb{F}_p+ u \mathbb{F}_p+ v \mathbb{F}_p+ u v \mathbb{F}_p $, J. Syst. Sci. Complex., 27 (2014), 811-816. doi: 10.1007/s11424-014-3241-3. |
[22] | http://www.codetables.de/BKLC/Tables.php?q=4&n0=1&n1=256&k0=1&k1=256. |