[1]
|
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inform. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584.
|
[2]
|
L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Information and Control, 20 (1972), 158-175.
doi: 10.1016/S0019-9958(72)90354-3.
|
[3]
|
A. R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[4]
|
A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97.
|
[5]
|
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.
doi: 10.1109/TIT.2005.847722.
|
[6]
|
G. D. Cohen, S. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, in Cryptography and Coding, Lecture Notes in Comput. Sci., 8308, Springer, Heidelberg, 2013, 85–98.
doi: 10.1007/978-3-642-45239-0_6.
|
[7]
|
C. Ding, Codes from Difference Sets, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9283.
|
[8]
|
C. Ding, A construction of binary linear codes from Boolean functions, Discrete Math., 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029.
|
[9]
|
C. Ding, Linear codes from some 2-designs, IEEE Trans. Inform. Theory, 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[10]
|
C. Ding, T. Helleseth, T. Kl$\phi$ve and X. Wang, A general construction of Cartesian authentication codes, IEEE Trans. Inform. Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872.
|
[11]
|
C. Ding, C. Li, N. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001.
|
[12]
|
C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.
doi: 10.1109/TIT.2011.2165314.
|
[13]
|
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, in Coding and Cryptology, Ser. Coding Theory Cryptol., 4, World Sci. Publ., Hackensack, NJ, 2008,119–124.
doi: 10.1142/9789812832245_0009.
|
[14]
|
C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inform. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886.
|
[15]
|
C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoret. Comput. Sci., 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011.
|
[16]
|
C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.
doi: 10.1016/j.disc.2012.11.009.
|
[17]
|
C. Ding and J. Yin, Algebraic constructions of constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 1585-1589.
doi: 10.1109/TIT.2005.844087.
|
[18]
|
K. Ding and C. Ding, Binary linear codes with three weights, IEEE Comm. Letters, 18 (2014), 1879-1882.
doi: 10.1109/LCOMM.2014.2361516.
|
[19]
|
K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[20]
|
Z. Heng, C. Ding and Z. Zhou, Minimal linear codes over finite fields, Finite Fields Appl., 54 (2018), 176-196.
doi: 10.1016/j.ffa.2018.08.010.
|
[21]
|
C. Li, Q. Yue and F. W. Fu, A construction of several classes of two-weight and three-weight linear codes, Appl. Algebra Engrg. Comm. Comput., 28 (2017), 11-30.
doi: 10.1007/s00200-016-0297-4.
|
[22]
|
C. Li, S. Bae and S. Yang., Some two-weight and three-weight linear codes., Adv. Math. Commun., 13 (2019), 195-211.
doi: 10.3934/amc.2019013.
|
[23]
|
S. Li, T. Feng and G. Ge, On the weight distribution of cyclic codes with Niho exponents, IEEE Trans. Inform. Theory, 60 (2014), 3903-3912.
doi: 10.1109/TIT.2014.2318297.
|
[24]
|
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20, Addison-Wesley Publishing Company, Reading, MA, 1983.
doi: 10.1017/CBO9780511525926.
|
[25]
|
C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inform. Theory, 57 (2011), 397-402.
doi: 10.1109/TIT.2010.2090272.
|
[26]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Mathematical Library, 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[27]
|
S. Mesnager, Linear codes with few weights from weakly regular bent functions based on a generic construction, Cryptogr. Commun., 9 (2017), 71-84.
doi: 10.1007/s12095-016-0186-5.
|
[28]
|
C. Tang, N. Li, Y. Qi, Z. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inform. Theory, 62 (2016), 1166-1176.
doi: 10.1109/TIT.2016.2518678.
|
[29]
|
G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inform. Theory, 58 (2012), 4862-4869.
doi: 10.1109/TIT.2012.2193376.
|
[30]
|
M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.
doi: 10.1016/j.ffa.2012.06.001.
|
[31]
|
J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 59 (2013), 5985-5993.
doi: 10.1109/TIT.2013.2266731.
|
[32]
|
J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inform. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412.
|
[33]
|
X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.
doi: 10.1016/j.ffa.2009.12.001.
|
[34]
|
Z. Zhou, N. Li, C. Fan and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.
doi: 10.1007/s10623-015-0144-9.
|
[35]
|
Z. Zhou, C. Tang, X. Li and C. Ding, Binary LCD Codes and self-orthogonal codes from a generic construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.
doi: 10.1109/TIT.2018.2823704.
|