On the covering radius of some modular codes
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the covering radius of some modular codes

Abstract / Introduction Related Papers Cited by
  • This paper gives lower and upper bounds on the covering radius of codes over $\mathbb{Z}_{2^s}$ with respect to homogenous distance. We also determine the covering radius of various Repetition codes, Simplex codes (Type $\alpha$ and Type $\beta$) and their dual and give bounds on the covering radii for MacDonald codes of both types over $\mathbb{Z}_4$.
    Mathematics Subject Classification: Primary: 94B25; Secondary: 11H31.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Aoki, P. Gaborit, M. Harada, M. Ozeki and P. Solé, On the covering radius of $\mathbb Z_{4}$ codes and their lattices, IEEE Trans. Inform. Theory, 45 (1999), 2162-2168.doi: 10.1109/18.782168.

    [2]

    E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.doi: 10.1109/18.761269.

    [3]

    M. C. Bhandari, M. K. Gupta and A. K. Lal, On $\mathbb Z_4$ simplex codes and their gray images, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 1999, 170-179.doi: 10.1007/3-540-46796-3_17.

    [4]

    A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 43 (1997), 969-976.doi: 10.1109/18.568705.

    [5]

    A. Bonnecaze, P. Solé and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory, 41 (1995), 366-377.doi: 10.1109/18.370138.

    [6]

    C. Carlet, $\mathbb Z_{2^k}$-linear codes, IEEE Trans. Inform. Theory, 44 (1998), 1543-1547.doi: 10.1109/18.681328.

    [7]

    C. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier, 1997.

    [8]

    G. D. Cohen, M. G. Karpovsky, H. F. Mattson and J. R. Schatz, Covering radius-survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), 328-343.doi: 10.1109/TIT.1985.1057043.

    [9]

    C. J. Colbourn and M. K. Gupta, On quaternary MacDonald codes, in Proc. Information Technology: Coding and Computing, 2003, 212-215.doi: 10.1109/ITCC.2003.1197528.

    [10]

    I. Constantinescu, W. Heise and T. Honold, Monomial extensions of isometries between codes over $\mathbb Z_m$, in Proc. Workshop ACCT'96, Sozopol, Bulgaria, 1996, 98-104.

    [11]

    J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo $4$, J. Combin. Theory Ser. A, 62 (1993), 30-45.doi: 10.1016/0097-3165(93)90070-O.

    [12]

    S. Dodunekov and J. Simonis, Codes and projective multisets, Electr. J. Combin., 5 (1998), R37.

    [13]

    S. T. Dougherty, T. A. Gulliver and M. Harada, Type II codes over finite rings and even unimodular lattices, J. Alg. Combin., 9 (1999), 233-250.doi: 10.1023/A:1018696102510.

    [14]

    S. T. Dougherty, M. Harada and P. Solé, Self-dual codes over rings and the Chinese remainder theorem, Hokkaido Math. J., 28 (1999), 253-283.doi: 10.14492/hokmj/1351001213.

    [15]

    S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $\mathbb Z_4$, Finite Fields Appl., 7 (2001), 507-529.doi: 10.1006/ffta.2000.0312.

    [16]

    C. Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes, Ph.D Thesis, Department of Mathematics, IIT Kanpur, 1996.

    [17]

    T. A. Gulliver and M. Harada, Double circulant self dual codes over $\mathbb Z_{2k}$, IEEE Trans. Inform. Theory, 44 (1998), 3105-3123.doi: 10.1109/18.737540.

    [18]

    A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull Amer. Math. Soc., 29 (1993), 218-222.doi: 10.1090/S0273-0979-1993-00426-9.

    [19]

    A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154.

    [20]

    M. Harada, New extremal Type II codes over $\mathbb Z_4$, Des. Codes Cryptogr., 13 (1998), 271-284.doi: 10.1023/A:1008254008212.

    [21]

    E. M. Rains and N. J. A. Sloane, Self-dual codes, in The Handbook of Coding Theory (eds. V. Pless and W.C. Huffman), North-Holland, 1998.

    [22]

    V. V. Vazirani, H. Saran and B. SundarRajan, An efficient algorithm for constructing minimal trellises for codes over finite abelian groups, IEEE Trans. Inform. Theory, 42 (1996), 1839-1854.doi: 10.1109/18.556679.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return