Citation: |
[1] |
T. Aoki, P. Gaborit, M. Harada, M. Ozeki and P. Solé, On the covering radius of $\mathbb Z_{4}$ codes and their lattices, IEEE Trans. Inform. Theory, 45 (1999), 2162-2168.doi: 10.1109/18.782168. |
[2] |
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.doi: 10.1109/18.761269. |
[3] |
M. C. Bhandari, M. K. Gupta and A. K. Lal, On $\mathbb Z_4$ simplex codes and their gray images, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 1999, 170-179.doi: 10.1007/3-540-46796-3_17. |
[4] |
A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 43 (1997), 969-976.doi: 10.1109/18.568705. |
[5] |
A. Bonnecaze, P. Solé and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory, 41 (1995), 366-377.doi: 10.1109/18.370138. |
[6] |
C. Carlet, $\mathbb Z_{2^k}$-linear codes, IEEE Trans. Inform. Theory, 44 (1998), 1543-1547.doi: 10.1109/18.681328. |
[7] |
C. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier, 1997. |
[8] |
G. D. Cohen, M. G. Karpovsky, H. F. Mattson and J. R. Schatz, Covering radius-survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), 328-343.doi: 10.1109/TIT.1985.1057043. |
[9] |
C. J. Colbourn and M. K. Gupta, On quaternary MacDonald codes, in Proc. Information Technology: Coding and Computing, 2003, 212-215.doi: 10.1109/ITCC.2003.1197528. |
[10] |
I. Constantinescu, W. Heise and T. Honold, Monomial extensions of isometries between codes over $\mathbb Z_m$, in Proc. Workshop ACCT'96, Sozopol, Bulgaria, 1996, 98-104. |
[11] |
J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo $4$, J. Combin. Theory Ser. A, 62 (1993), 30-45.doi: 10.1016/0097-3165(93)90070-O. |
[12] |
S. Dodunekov and J. Simonis, Codes and projective multisets, Electr. J. Combin., 5 (1998), R37. |
[13] |
S. T. Dougherty, T. A. Gulliver and M. Harada, Type II codes over finite rings and even unimodular lattices, J. Alg. Combin., 9 (1999), 233-250.doi: 10.1023/A:1018696102510. |
[14] |
S. T. Dougherty, M. Harada and P. Solé, Self-dual codes over rings and the Chinese remainder theorem, Hokkaido Math. J., 28 (1999), 253-283.doi: 10.14492/hokmj/1351001213. |
[15] |
S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $\mathbb Z_4$, Finite Fields Appl., 7 (2001), 507-529.doi: 10.1006/ffta.2000.0312. |
[16] |
C. Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes, Ph.D Thesis, Department of Mathematics, IIT Kanpur, 1996. |
[17] |
T. A. Gulliver and M. Harada, Double circulant self dual codes over $\mathbb Z_{2k}$, IEEE Trans. Inform. Theory, 44 (1998), 3105-3123.doi: 10.1109/18.737540. |
[18] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull Amer. Math. Soc., 29 (1993), 218-222.doi: 10.1090/S0273-0979-1993-00426-9. |
[19] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154. |
[20] |
M. Harada, New extremal Type II codes over $\mathbb Z_4$, Des. Codes Cryptogr., 13 (1998), 271-284.doi: 10.1023/A:1008254008212. |
[21] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in The Handbook of Coding Theory (eds. V. Pless and W.C. Huffman), North-Holland, 1998. |
[22] |
V. V. Vazirani, H. Saran and B. SundarRajan, An efficient algorithm for constructing minimal trellises for codes over finite abelian groups, IEEE Trans. Inform. Theory, 42 (1996), 1839-1854.doi: 10.1109/18.556679. |