The dark channel prior has been successfully applied to solve the blind deblurring problem on different scene images. Since the dark channel of the blurry-noise image is similar to that of the corresponding clear image, the sparsity of the dark channel is less effective for image blind deblurring. Inspired by the fact that a fractional order calculation can inhibit the noise and preserve the texture information of the image, a fractional order dark channel prior is proposed for image deblurring in this paper. It is appropriate for kernel estimation where input images and intermediate images are processed by using a fractional order dark channel prior. Furthermore, the non-convex problem is solved by the half-quadratic splitting method, and some metrics are used for deblurring image quality assessment. Finally, quantitative and qualitative experimental results show that the proposed method achieves state-of-the-art results on synthetic and real blurry images.