Analysis of Coastline Extraction from Landsat-8 OLI Imagery
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Water Index
3.2. Water/Non-Water Binary Map Produced by Using Otsu Method
3.3. Pansharpening Algorithms
3.3.1. Intensity-Hue-Saturation (IHS)
3.3.2. Principal Component Analysis (PCA)
3.3.3. Gram Schmidt (GS)
3.3.4. Brovey Transform (Brovey)
3.3.5. Partial Replacement Adaptive Component Substitution (PRACS)
3.3.6. High Pass Filtering (HPF)
3.3.7. Smoothing-Filter-Based Intensity Modulation (SFIM)
3.3.8. Additive Injection Model (Indusion)
3.3.9. Additive À Trous Wavelet Transform (ATWT)
3.3.10. Additive Wavelet Luminance Proportional (AWLP)
3.4. Downscaling Panchromatic (PAN) Band with Interpolation
3.5. Validation of Coastline Extraction
4. Results
4.1. Pansharpened Multispectral (MS) Images
4.2. Coastline Extraction
4.3. Comparising Extracted Coastlines of Different Strategies
4.4. Comparising Extracted Coastlines of Different Pansharpening Algorithms
4.5. General Quantitative Analysis
4.6. Coastline Extraction Efectiveness
4.7. Threshold Value Effect on Coastline Extraction
5. Discussions
5.1. Advance Accuracy Evaluation of the Proposed Method
5.2. Limitaions and Future Scopes
6. Conclusions
- (1)
- For the fusion of Landsat-8 OLI original MS image and PAN band, PCA and GS pansharpening algorithms result in fused MS images with serious spectral distortions, and almost cannot be used to distinguish water and non-water features with NDWI and are also not suggested to be used for coastline extraction.
- (2)
- The coastlines produced in strategies 2 and 3 have better performance than that in strategy 1. With the increase of spatial resolution, subtle coastline changes which are indistinguishable in coarse spatial resolution MS images can be exploited well in the fused MS images in strategies 2 and 3. It indicates that pansharpening approach can improve the coastline extraction from Landsat-8 OLI imagery.
- (3)
- Strategy 3 produces coastlines with the best performance, indicating that further downscaling the PAN band is an alternative way to increase the coastline extraction accuracy.
- (4)
- For the ten widely used pansharpening algorithms, most of the MRA-based methods presents better results than that of CS-based methods in both strategies 2 and 3. Among the MRA-based methods, Indusion, ATWT and AWLP algorithms are the most efficient for increasing coastline extraction accuracy of Landsat-8 OLI imagery.
- (5)
- For the artificial coast, the coastlines extracted from most of the fusion methods agree well with the fluctuation trend of reference coastline. For both bedrock coast and sandy coast, the coastlines extracted from the fused images of Indusion algorithm in strategies 2 and 3 present the most accurate and visually realistic presentation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aedla, R.; Dwarakish, G.S.; Reddy, D.V. Automatic shoreline detection and change detection analysis of Netravati-Gurpur River mouth using histogram equalization and adaptive thresholding techniques. Aquat. Procedia 2015, 4, 563–570. [Google Scholar] [CrossRef]
- Moore, L.J. Shoreline mapping techniques. J. Coast. Res. 2000, 16, 111–124. [Google Scholar]
- Lira, C.P.; Silva, A.N.; Taborda, R.; de Andrade, C.F. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: An integrated approach. Earth Syst. Sci. Data 2016, 8, 265–278. [Google Scholar] [CrossRef]
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef]
- Dewi, R.S.; Bijker, W.; Stein, A.; Marfai, M.A. Fuzzy classification for shoreline change monitoring in a part of the northern coastal area of Java, Indonesia. Remote Sens. 2016, 8, 190. [Google Scholar] [CrossRef]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Bruno, M.F.; Molfetta, M.G.; Mossa, M.; Nutricato, R.; Morea, A.; Chiaradia, M.T. Coastal observation through Cosmo-SkyMed high-resolution SAR images. J. Coast. Res. 2016, 33 Pt 2, 795–799. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Sherman, D.J.; Wu, Q.; Su, H. Algorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR data. J. Geogr. Inf. Syst. 2011, 3, 99–119. [Google Scholar] [CrossRef]
- Di, K.; Wang, J.; Ma, R.; Li, R. Automatic Shoreline Extraction from High-Resolution IKONOS Satellite Imagery. In Proceedings of the ASPRS 2003 Annual Conference, Anchorage, AK, USA, 5–9 May 2003. [Google Scholar]
- Puissant, A.; Lefevre, S.E.B.; Weber, J. Coastline Extraction in VHR Imagery Using Mathematical Morphology with Spatial and Spectral Knowledge. In Proceedings of the SPRS Congress Beijing 2008, Beijing, China, 3–11 July 2008; pp. 1305–1310. [Google Scholar]
- Sekovski, I.; Stecchi, F.; Mancini, F. Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery. Int. J. Remote Sens. 2014, 10, 3556–3578. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Molfetta, M.G.; Damiani, L. New algorithms for shoreline monitoring from coastal video systems. Earth Sci. Inf. 2017, 1–12. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.; Almonacid-Caballer, J. Analysis of the shoreline Position Extracted from Landsat TM and ETM+ Imagery. In Proceedings of the 36th International Symposium on Remote Sensing of Environmen, Berlin, Germany, 11–15 May 2015; pp. 991–998. [Google Scholar]
- Lira, C.; Taborda, R. Advances in applied remote sensing to coastal environments using free satellite imagery. In Remote Sensing and Modeling; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 9, pp. 77–102. ISBN 978-3-319-06325-6. [Google Scholar]
- Chen, S.; Chen, L.; Liu, Q.; Li, X.; Tan, Q. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China. Ocean Coast. Manag. 2005, 48, 65–83. [Google Scholar] [CrossRef]
- Ekercin, S. Coastline change assessment at the Aegean Sea coasts in Turkey using multitemporal Landsat imagery. J. Coast. Res. 2007, 23, 691–698. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-Temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J.; Rodrigo-Alemany, R. Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology 2014, 214, 388–401. [Google Scholar] [CrossRef]
- Liu, Q.; Trinder, J.; Turner, I.L. Automatic super-resolution shoreline change monitoring using Landsat archival data: A case study at Narrabeen–Collaroy Beach, Australia. J. Appl. Remote Sens. 2017, 11, 016036. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Almonacid-Caballer, J.; Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.A.; Palomar-Vázquez, J. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Mar. Geol. 2016, 372, 79–88. [Google Scholar] [CrossRef]
- Foody, G.M.; Muslim, A.M.; Atkinson, P.M. Super-resolution mapping of the waterline from remotely sensed data. Int. J. Remote Sens. 2005, 26, 5381–5392. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS+PAN data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Amro, I.; Mateos, J.; Vega, M.; Molina, R.; Katsaggelos, A.K. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 2011, 79. [Google Scholar] [CrossRef]
- Zhang, Y. Recent advances in pansharpening and key problems in applications. Int. J. Image Data Fusion 2014, 5, 175–195. [Google Scholar]
- Medina, A.; Marcello, J.; Rodriguez, D.; Eugenio, F.; Martin, J. Quality Evaluation of Pansharpening Techniques on Different Land Cover Types. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2 August 2012; pp. 5442–5445. [Google Scholar]
- Lwin, K.K.; Murayama, Y. Evaluation of land cover classification based on multispectral versus pansharpened Landsat ETM+ imagery. GISci. Remote Sens. 2013, 50, 458–472. [Google Scholar]
- Wunderle, A.L.; Franklin, S.E.; Guo, X.G. Regenerating boreal forest structure estimation using SPOT-5 PAN-sharpened imagery. Int. J. Remote Sens. 2007, 28, 4351–4364. [Google Scholar] [CrossRef]
- Song, J.J.; Hun, C.J. Application effect analysis of image fusion methods for extraction of shoreline in coastal zone using Landsat ETM. Atmos. Ocean. Sci. 2016, 1, 1–6. [Google Scholar]
- Atkinson, P.M.; Pardo-Iguzquiza, E.; Chica-Olmo, M. Downscaling cokriging for super-resolution mapping of continua in remotely sensed images. IEEE Trans. Geosci. Remote 2008, 46, 573–580. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P.M.; Pardo-Igúzquiza, E. A new geostatistical solution to remote sensing image downscaling. IEEE Trans. Geosci. Remote 2015, 54, 1–11. [Google Scholar] [CrossRef]
- Mitra, S.S.; Mitra, D.; Santra, A. Performance testing of selected automated coastline detection techniques applied on multispectral satellite imageries. Earth Sci. Inf. 2017, 10, 321–330. [Google Scholar] [CrossRef]
- Cui, B.; Li, X. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 2011, 127, 32–40. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 5, 589–595. (In Chinese) [Google Scholar]
- Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water features. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Yang, H. Definition of the management boundary between river and sea in Ningbo. J. Mar. Sci. 2009, 27, 64–75. (In Chinese) [Google Scholar]
- Wang, T.; Zhang, G.; Li, D.; Tang, X.; Jiang, Y.; Pan, H.; Zhu, X.; Fang, C. Geometric accuracy validation for ZY-3 satellite imagery. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1168–1171. [Google Scholar] [CrossRef]
- Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Zhang, Q.; Lu, X. Remotely sensed trajectory analysis of channel migration in Lower Jingjiang Reach during the period of 1983–2013. Remote Sens. 2015, 7, 16241–16256. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Sidek, O.; Quadri, S.A. A review of data fusion models and systems. Int. J. Image Data Fusion 2012, 3, 3–21. [Google Scholar] [CrossRef]
- Ehlers, M.; Klonus, S.; Johan Strand, P.R.; Rosso, P. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 2010, 1, 25–45. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Lotti, F.; Selva, M. A comparison between global and context-adaptive pansharpening of multispectral images. IEEE Geosci. Remote Sens. 2009, 6, 302–306. [Google Scholar] [CrossRef]
- Carper, W.J. The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. 2004, 1, 309–312. [Google Scholar] [CrossRef]
- Wang, Z.; Ziou, D.; Armenakis, C.; Li, D. A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1391–1402. [Google Scholar] [CrossRef]
- Psjr, C.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1990, 57, 265–303. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000. [Google Scholar]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Xu, H. Study on data fusion and classification of Landsat 7 ETM+ imagery. Int. J. Remote Sens. 2005, 9, 186–194. (In Chinese) [Google Scholar]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Liu, J.G. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Xu, R.; Xu, H. Evaluation on image fusion algorithms of Landsat-7 ETM+ PAN band and multispectral bands. Geo-Inf. Sci. 2004, 6, 99–103. (In Chinese) [Google Scholar]
- Liu, J.G. Evaluation of landsat-7 ETM+ panchromatic band for image fusion with multispectral bands. Nat. Resour. Res. 2000, 9, 269–276. [Google Scholar] [CrossRef]
- Khan, M.M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci. Remote Sens. 2008, 5, 98–102. [Google Scholar] [CrossRef]
- Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Palà, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Restaino, R.; Dalla Mura, M.; Licciardi, G. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. 2014, 11, 930–934. [Google Scholar] [CrossRef]
- Otazu, X.; Gonzalez-Audicana, M.; Fors, O.; Nunez, J. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M. Downscaling in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The digital shoreline analysis system (DSAS) version 4.0-An ArcGIS extension for calculating shoreline change. In Open-File Report 2008-1278; Updated for Version 4.3; U.S. Geological Survey: Woods Hole, MA, USA, 2009; pp. 1–81. [Google Scholar]
- Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of coastline in aquaculture coast from multispectral remote sensing images: Object-based region growing integrating edge detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Park, S.C.; Min, K.P.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
Image Type | Acquisition Date | Spatial Resolution (m) | Bands | Wavelength (µm) |
---|---|---|---|---|
Landsat-8 OLI MS | 12 March 2015 | 30 | Band 1-coastal aerosol | 0.43–0.45 |
Band 2-blue | 0.45–0.51 | |||
Band 3-green | 0.53–0.59 | |||
Band 4-red | 0.64–0.67 | |||
Band 5-near infrared (NIR) | 0.85–0.88 | |||
Band 6-short wave infrared (SWIR 1) | 1.57–1.65 | |||
Band 7-short wave infrared (SWIR 2) | 2.11–2.29 | |||
Landsat-8 OLI PAN | 12 March 2015 | 15 | Band 8-Panchromatic (PAN) | 0.5–0.68 |
ZY-3 | 12 March 2015 | 5.8 | Band 1-blue | 0.45–0.52 |
Band 2-green | 0.52–0.59 | |||
Band 3-red | 0.63–0.69 | |||
Band 4-NIR | 0.77–0.89 |
Scheme | Fusion Methods | QNR | Scheme | Fusion Methods | QNR | ||||
---|---|---|---|---|---|---|---|---|---|
Ideal value | 0 | 0 | 1 | Ideal value | 0 | 0 | 1 | ||
ST 2 | PCA | 0.2803 | 0.1365 | 0.6214 | ST 3 | PCA | 0.2594 | 0.1331 | 0.6421 |
GS | 0.2803 | 0.1365 | 0.6214 | GS | 0.1659 | 0.0798 | 0.7675 | ||
IHS | 0.2394 | 0.2030 | 0.6062 | IHS | 0.2298 | 0.2059 | 0.6116 | ||
Brovey | 0.2185 | 0.1728 | 0.6465 | Brovey | 0.2103 | 0.1733 | 0.6529 | ||
PRACS | 0.0588 | 0.0252 | 0.9175 | PRACS | 0.0689 | 0.0225 | 0.9101 | ||
HPF | 0.1489 | 0.1450 | 0.7277 | HPF | 0.1474 | 0.1299 | 0.7419 | ||
SFIM | 0.1483 | 0.1481 | 0.7256 | SFIM | 0.1405 | 0.1255 | 0.7516 | ||
Indusion | 0.0884 | 0.1084 | 0.8128 | Indusion | 0.0737 | 0.1595 | 0.7786 | ||
ATWT | 0.1770 | 0.1778 | 0.6766 | ATWT | 0.1749 | 0.1596 | 0.6933 | ||
AWLP | 0.1968 | 0.2051 | 0.6384 | AWLP | 0.1873 | 0.1793 | 0.6671 |
Scheme | Fusion Methods | MAD (m) | Maximum AD (m) | Minimum AD (m) | MNSM (m) | Maximum Positive NSM (m) | Maximum Negative NSM (m) |
---|---|---|---|---|---|---|---|
ST 1 | - | 18.62 | 223.89 | 0.02 | 13.53 | 124.19 | −223.89 |
ST 2 | IHS | 15.08 | 438.82 | 0.01 | −4.23 | 40.00 | −438.82 |
Brovey | 15.97 | 251.42 | 0.04 | 12.26 | 251.42 | −108.6 | |
PRACS | 16.16 | 222.95 | 0.04 | 12.41 | 136.75 | −222.95 | |
HPF | 14.31 | 137.19 | 0.02 | 10.25 | 137.19 | −114.68 | |
SFIM | 14.36 | 226.73 | 0.02 | 9.9 | 136.46 | −109.53 | |
Indusion | 13.54 | 227.08 | 0.01 | 9.21 | 129.47 | −107.11 | |
ATWT | 16.24 | 199.05 | 0 | 6.09 | 130.56 | −106.84 | |
AWLP | 16.42 | 198.67 | 0 | 6.13 | 128.99 | −108.25 | |
ST 3 | IHS | 12.3 | 301.81 | 0 | −6.88 | 38.00 | −301.81 |
Brovey | 12.02 | 128.58 | 0.01 | 8.36 | 128.58 | −109.52 | |
PRACS | 11.67 | 203.95 | 0.01 | 8.03 | 123.07 | −203.95 | |
HPF | 11.26 | 131.32 | 0.02 | 7.85 | 131.32 | −106.64 | |
SFIM | 11.99 | 133.15 | 0.06 | 8.66 | 133.15 | −106.82 | |
Indusion | 13.85 | 208.17 | 0.06 | −2.54 | 122.74 | −110.80 | |
ATWT | 11.86 | 128.02 | 0.01 | 7.34 | 128.02 | −106.46 | |
AWLP | 13.24 | 124.17 | 0.01 | 4.78 | 124.17 | −107.49 |
Other Methods | Band 6 | AWEI | ISODATA |
---|---|---|---|
MNSM | 11.29 | 36.67 | 14.43 |
MAD | 23.99 | 44.58 | 24.12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, X.; Ling, F.; Xu, S.; Wang, C. Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water 2017, 9, 816. https://doi.org/10.3390/w9110816
Liu Y, Wang X, Ling F, Xu S, Wang C. Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water. 2017; 9(11):816. https://doi.org/10.3390/w9110816
Chicago/Turabian StyleLiu, Yaolin, Xia Wang, Feng Ling, Shuna Xu, and Chengcheng Wang. 2017. "Analysis of Coastline Extraction from Landsat-8 OLI Imagery" Water 9, no. 11: 816. https://doi.org/10.3390/w9110816
APA StyleLiu, Y., Wang, X., Ling, F., Xu, S., & Wang, C. (2017). Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water, 9(11), 816. https://doi.org/10.3390/w9110816