Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing
Abstract
:1. Introduction
2. Methods
2.1. CNN Architectures
2.1.1. Unet
2.1.2. DeepLabv3+
2.2. Data Pre-Processing
2.2.1. Sentinel-1 Dataset
2.2.2. Data Augmentation
2.3. Image Filtering
2.4. Model Ensemble
3. Results and Discussion
3.1. Experimental Methods
Loss Function and Accuracy Metric
3.2. Final Results
3.2.1. Evaluation during Training
3.2.2. Qualitative Results
4. Conclusions
Future Work—Dual ‘Oil Look-Alike’ Relabeling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Saadoun, I.M. Impact of oil spills on marine life. Emerg. Pollut. Environ.-Curr. Furth. Implic. 2015, 10, 60455. [Google Scholar]
- Kontovas, C.A.; Psaraftis, H.N.; Ventikos, N.P. An empirical analysis of IOPCF oil spill cost data. Mar. Pollut. Bull. 2010, 60, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Dave, D.A.E.G.; Ghaly, A.E. Remediation technologies for marine oil spills: A critical review and comparative analysis. Am. J. Environ. Sci. 2011, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Application sentinel-1 SAR data for ocean research and operation. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017. [Google Scholar]
- Topouzelis, K.; Karathanassi, V.; Pavlakis, P.; Rokos, D. A new object-oriented methodology to detect oil spills using Envisat images. In Proceedings of the ‘ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep learning vs. traditional computer vision. In Science and Information Conference; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wang, R.; Deng, Y.; Jia, X.; Zhang, H. Rethinking the Random Cropping Data Augmentation Method Used in the Training of CNN-based SAR Image Ship Detector. Remote Sens. 2021, 13, 34. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil spill detection in quad-polarimetric SAR Images using an advanced convolutional neural network based on SuperPixel model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Rui, X.; Zhang, G.; Yu, T.; Xu, X.; Poslad, S. Feature Merged Network for Oil Spill Detection Using SAR Images. Remote Sens. 2021, 13, 3174. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 27–30 June 2016. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Fadnavis, S. Image interpolation techniques in digital image processing: An overview. Int. J. Eng. Res. Appl. 2014, 4, 70–73. [Google Scholar]
- Cheng, H.D.; Shi, X.J. A simple and effective histogram equalization approach to image enhancement. Digit. Signal Processing 2004, 14, 158–170. [Google Scholar] [CrossRef]
- Winiarti, S.; Ismi, D.P.; Prahara, A. Image enhancement using piecewise linear contrast stretch methods based on unsharp masking algorithms for leather image processing. In Proceedings of the 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017. [Google Scholar]
- Zhou, Z.-H. Ensemble learning. Encycl. Biom. 2009, 1, 270–273. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Model | Epoch Number with Highest Result |
---|---|
Unet no filter | 431 |
DeepLabv3+ no filter | 383 |
Unet with contrast stretch | 333 |
DeepLabv3+ with contrast stretch | 491 |
Unet with histogram equalization | 265 |
DeepLabv3+ with histogram equalization | 366 |
Model | Ocean | Oil Spill | Oil Look-Alike | Ship | Land | Mean |
---|---|---|---|---|---|---|
Unet baseline [10] (p. 12) | 93.90 | 53.79 | 39.55 | 44.93 | 92.68 | 64.97 |
DeepLabv3+ baseline [10] (p. 12) | 96.43 | 53.38 | 55.40 | 27.63 | 92.44 | 65.06 |
Unet no filter | 95.59 | 51.63 | 47.73 | 50.59 | 96.33 | 68.30 |
DeepLabv3+ no filter | 95.85 | 49.00 | 51.62 | 39.39 | 93.99 | 65.98 |
Unet with contrast stretch | 96.21 | 54.2 | 53.42 | 46.25 | 95.8 | 69.18 |
DeepLabv3+ with contrast stretch | 96.07 | 54.5 | 54.51 | 42.46 | 95.94 | 68.68 |
Unet with histogram equalization | 96.43 | 51.8 | 55.14 | 46.26 | 96.28 | 69.18 |
DeepLabv3+ with histogram equalization | 96.35 | 53.78 | 57.70 | 41.37 | 92.3 | 68.3 |
Ensemble model | 96.78 | 56.1 | 58.88 | 47.28 | 96.59 | 71.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousso, R.; Katz, N.; Sharon, G.; Glizerin, Y.; Kosman, E.; Shuster, A. Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing. Water 2022, 14, 1127. https://doi.org/10.3390/w14071127
Rousso R, Katz N, Sharon G, Glizerin Y, Kosman E, Shuster A. Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing. Water. 2022; 14(7):1127. https://doi.org/10.3390/w14071127
Chicago/Turabian StyleRousso, Rotem, Neta Katz, Gull Sharon, Yehuda Glizerin, Eitan Kosman, and Assaf Shuster. 2022. "Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing" Water 14, no. 7: 1127. https://doi.org/10.3390/w14071127
APA StyleRousso, R., Katz, N., Sharon, G., Glizerin, Y., Kosman, E., & Shuster, A. (2022). Automatic Recognition of Oil Spills Using Neural Networks and Classic Image Processing. Water, 14(7), 1127. https://doi.org/10.3390/w14071127