Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. The Climate Change Model and Scenarios
2.3. The Soil and Water Assessment Tool
2.4. The SWAT Calibration and Uncertainty Procedures
2.5. System Dynamics Modeling and Scenarios
3. Results and Discussion
3.1. Climate Change Impacts on Temperature, Precipitation, and Evaporation
3.2. Climate Change Impacts on Streamflow
3.3. TP Concentration in the Reservoir
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vollenweider, R. Input-Output Models with Special Reference to the Phosphorus Loading Concept in Limnology. Schweiz. Z. Hydrol. 1975, 37, 53–83. [Google Scholar]
- Nazari-Sharabian, M.; Ahmad, S.; Karakouzian, M. Climate change and eutrophication: A short review. Eng. Technol. Appl. Sci. Res. 2018, 8, 3668–3672. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Thakali, R.; Kalra, A.; Ahmad, S. Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley. Hydrology 2016, 3, 34. [Google Scholar] [CrossRef]
- Thakali, R.; Kalra, A.; Ahmad, S.; Qaiser, K. Management of an Urban Stormwater System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach. Open Water J. 2018, 5, 1. [Google Scholar]
- Chen, C.; Ahmad, S.; Kalra, A. Hydrologic Responses to Climate Change Using Downscaled GCM Data on a Watershed Scale. J. Water Clim. Chang. 2018. [Google Scholar] [CrossRef]
- Kalra, A.; Sagarika, S.; Pathak, P.; Ahmad, S. Hydro-climatological changes in the Colorado River Basin over a century. Hydrol. Sci. J. 2017. [Google Scholar] [CrossRef]
- Pathak, P.; Kalra, A.; Ahmad, S. Temperature and Precipitation changes in the Midwestern United States: Implications for water management. Int. J. Water Res. Dev. 2017, 33. [Google Scholar] [CrossRef]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Woznicki, S.A.; Nejadhashemi, A.P. Sensitivity analysis of best management practices under climate change scenarios. J. Am. Water Resour. Assoc. 2012, 48, 90–112. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, N.S.; Evans, M.A.; Scavia, D.; Allan, J.D. Interacting effects of climate change and agricultural BMPs on nutrient runoff entering Lake Erie. J. Great Lakes Res. 2014, 40, 581–589. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Tao, L.; Chen, X.; Yao, H. Runoff Simulation Using SWAT Model in the Middle Reaches of the Dagu River Basin. In Sustainable Development of Water Resources and Hydraulic Engineering in China; Dong, W., Lian, Y., Zhang, Y., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Abbasi, Y.; Mannaerts, C.; Makau, W. Modeling Pesticide and Sediment Transport in the Malewa River Basin (Kenya) Using SWAT. Water 2019, 11, 87. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Ahmad, S. Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions. J. Arid Land 2018, 10, 68–83. [Google Scholar] [CrossRef]
- Chen, C.; Ahmad, S.; Kalra, A.; Xu, Z. A dynamic model for exploring water-resource management scenarios in an inland arid area: Shanshan County, Northwestern China. J. Mt. Sci. 2017, 14, 1039–1057. [Google Scholar] [CrossRef]
- Ahmad, S. Managing Water Demands for a Rapidly Growing City in Semi-Arid Environment: Study of Las Vegas, Nevada. Int. J. Water Resour. Arid Environ. 2016, 5, 35–42. [Google Scholar]
- Ahmad, S.; Prashar, D. Evaluating Municipal Water Conservation Policies Using Dynamic Simulation Model. Water Res. Manag. 2010, 24, 3371–3395. [Google Scholar] [CrossRef]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.N.S.; Pecson, B.; Gerrity, D. Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium. Water. Res. 2017, 119, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.K.; Ahmad, S.; Johnson, W.; Batista, J.R. Salinity reduction and energy conservation in direct and indirect potable water reuse. Desalination 2011, 272, 120–127. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Ahmad, S.; Johnson, W.; Batista, J.R. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas Valley. Sci. Total Environ. 2011, 409, 2616–2625. [Google Scholar] [CrossRef] [PubMed]
- Rusuli, Y.; Li, L.; Ahmad, S.; Zhao, X. Dynamics model to simulate water and salt balance of Bosten Lake in Xinjiang, China. Environ. Earth Sci. 2015, 74, 2499–2510. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. System dynamics modeling of reservoir operations for flood management. J. Comput. Civ. Eng. 2000, 14, 190–198. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. Modeling Dynamic Processes in Space and Time—A Spatial System Dynamics Approach. In Proceedings of the World Water and Environmental Resources Congress, Orlando, FL, USA, 20–24 May 2001; pp. 1–20. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. Spatial system dynamics: New approach for simulation of water resources systems. J. Comput. Civ. Eng. 2004, 18, 331–340. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. An intelligent decision support system for management of floods. Water Res. Manag. 2006, 20, 391–410. [Google Scholar] [CrossRef]
- Wu, G.; Li, L.; Ahmad, S.; Chen, X.; Pan, X. A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China. Water Resour. Manag. 2013, 27, 3085–3101. [Google Scholar] [CrossRef]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J. Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. J. Environ. Manag. 2011, 92, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J.R. Evaluating water conservation and reuse policies using a dynamic water balance model. Environ. Manag. 2013, 51, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430–431, 127–141. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ahmad, S.; Zhang, H.; Zhao, X.; Feng, X.; Li, L. Simulating low and high streamflow driven by snowmelt in an insufficiently gauged alpine basin. Stoch. Environ. Res. Risk Assess. 2016, 30, 59–75. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Shrestha, P.; Batista, J.R. Carbon footprint of water conveyance versus desalination as alternatives to expand water supply. Desalination 2011, 280, 33–43. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Batista, J.R. The carbon footprint of water management policy options. Energy Policy 2012, 42, 201–212. [Google Scholar] [CrossRef]
- Bukhary, S.; Ahmad, S.; Batista, J. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 2018, 82, 3288–3305. [Google Scholar] [CrossRef]
- Moumouni, Y. A System Dynamics Model for Energy Planning in Niger. Int. J. Energy Power Eng. 2014, 3, 308. [Google Scholar] [CrossRef]
- Nussbaum, E.M.; Owens, M.C.; Sinatra, G.M.; Rehmat, A.P.; Cordova, J.R.; Ahmad, S.; Dascalu, S.M. Losing the Lake: Simulations to Promote Gains in Student Knowledge and Interest about Climate Change. Int. J. Environ. Sci. Educ. 2015, 10, 789–811. [Google Scholar]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Mirchi, A.; Watkins, D., Jr. A systems approach to holistic total maximum daily load policy: Case of Lake Allegan, Michigan. J. Water Resour. Plan. Manag. 2013, 139, 544–553. [Google Scholar] [CrossRef]
- Liu, H.; Benoit, G.; Liu, T.; Liu, Y.; Guo, H. An integrated system dynamics model developed for managing lake water quality at the watershed scale. J. Environ. Manag. 2015, 155, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Duran-Encalada, J.; Paucar-Caceres, A.; Bandala, E.; Wright, G. The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef] [Green Version]
- I.R. of IRAN Meteorological Organization. Available online: http://www.irimo.ir/eng/ (accessed on 18 February 2018).
- Mahab Ghodss Consulting Engineering Company. Available online: http://www.mahabghodss.com/ (accessed on 18 February 2018).
- NEX—NASA Earth Exchange. Available online: https://nex.nasa.gov/nex/ (accessed on 18 February 2018).
- ASTER Global Digital Elevation Map. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 18 February 2018).
- FAO SOILS PORTAL; Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 18 February 2018).
- Ji, D.; Wang, L.; Feng, J.; Wu, Q.; Cheng, H.; Zhang, Q.; Yang, J.; Dong, W.; Dai, Y.; Gong, D.; et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev. 2014, 7, 2039–2064. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design B. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008; p. 132. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Alizadeh, A.; Izady, A.; Davary, K.; Ziaei, A.N.; Akhavan, S.; Hamidi, Z. Estimation of actual evapotranspiration at regional-annual scale using SWAT. Iran. J. Irrig. Drain. 2013, 7, 243–258. [Google Scholar]
- Yang, J.; Abbaspour, K.C.; Reichert, P.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E. Selecting among five common modeling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Davies, E.G.; Simonovic, S.P. Global water resources modeling with an integrated model of the social-economic-environmental system. Adv. Water Resour. 2011, 34, 684–700. [Google Scholar] [CrossRef]
- Simonovic, S.P. Managing Water Resources: Methods and Tools for a Systems Approach; Earthscan James & James: London, UK, 2009. [Google Scholar]
Land Use Type | Watershed Area (%) |
---|---|
Dryland Farming | 66.37 |
Dense Pasture | 13.82 |
Non-Dense Pasture | 11.09 |
Irrigated Farming | 4.49 |
Forest | 2.95 |
Water | 1.03 |
Urban (Medium Density) | 0.13 |
Soil Type | Sand (%) | Silt (%) | Clay (%) | Watershed Area (%) |
---|---|---|---|---|
Taconic | 43 | 35 | 23 | 72 |
Benson | 35 | 37 | 30 | 28 |
# | Scenario | Description |
---|---|---|
1 | Population increase | Increase in phosphorus loading from residential sources and increase in domestic water use |
2 | Increase in agriculture and livestock farming activities | Increase in phosphorus loadings from agricultural fields and livestock farming activities and increase in agricultural water use |
3 | Industrialization | Increase in industrial water use |
4 | Water conservation | Decrease in water allocations |
5 | Pollution control | Decrease in phosphorus loadings from pollution sources |
6 | Water conservation and pollution control | Decrease in water allocations and phosphorus loadings from pollution sources (combination of Scenario 4 and 5) |
Parameter | Description | Subbasins | Calibrated Value |
---|---|---|---|
DEEPST.gw | Initial depth of water in the deep aquifer (mm) | All | 7566.89 |
ALPHA_BF.gw | Baseflow alpha factor (1/days) | All | 0.87 |
REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm) | All | 702.66 |
SNO_SUB.sub | Initial snow water content (mm) | All | 28.308 |
CH_K1.sub | Effective hydraulic conductivity in tributary channel alluvium (mm/h) | 11, 13, 14, 21, 24–26, 28, 36 | 215.298 |
15–20, 22, 23, 27, 29–35, 37–45 | 5.06 | ||
CH_N1.sub | Manning’s “n” value for the tributary channels | 11, 13, 14, 21, 24–26, 28, 36 | 26.46 |
15–20, 22, 23, 27, 29–35, 37–45 | 17.279 | ||
CH_N2.rte | Manning’s “n” value for the main channel | 11, 13, 14, 21, 24–26, 28, 36 | 0.235 |
15–20, 22, 23, 27, 29–35, 37–45 | 0.116 | ||
CH_K2.rte | Effective hydraulic conductivity in main channel alluvium (mm/h) | 11, 13, 14, 21, 24–26, 28, 36 | 160.026 |
15–20, 22, 23, 27, 29–35, 37–45 | 371.048 | ||
EPCO.hru | Plant uptake compensation factor | All | 0.825 |
CANMX.hru | Maximum canopy storage (mm) | All | 3.417 |
OV_N.hru | Manning’s “n” value for the overland flow | 11, 13, 14, 21, 24–26, 28, 36 | 10.78 |
15–20, 22, 23, 27, 29–35, 37–45 | 22.0 | ||
SOL_AWC(1).sol____TACONIC | Available water capacity of the soil layer (mm H2O/mm soil) | All | 0.12 |
SOL_K(1).sol____TACONIC | Saturated hydraulic conductivity (mm/h) | All | 15.41 |
SOL_BD(1).sol____TACONIC | Moist bulk density (g/cm3) | All | 0.9 |
SOL_ZMX.sol____TACONIC | Maximum rooting depth of soil profile (mm) | All | 1124.15 |
SOL_AWC(1).sol____BENSON | Available water capacity of the soil layer (mm H2O/mm soil) | All | 0.21 |
SOL_K(1).sol____BENSON | Saturated hydraulic conductivity (mm/h) | All | 19.91 |
SOL_BD(1).sol____BENSON | Moist bulk density (g/cm3) | All | 1.26 |
SOL_ZMX.sol____BENSON | Maximum rooting depth of soil profile (mm) | All | 2036.35 |
Parameter | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP settling rate (×10−6 m/s) | 0.35 | 0.59 | 1.12 | 3.54 | 2.8 | 2.06 | 2.31 | 0.63 | 3.39 | 2.39 | 0.94 | 1.52 |
TP resuspension rate (×10−7 m/s) | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 2.2 | 0.5 | 0.22 | 0.18 | 0.24 |
TP burial rate (×10−8 m/s) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
Initial TP load in the reservoir (ton) | 4.85 | |||||||||||
Initial TP load in sediments (ton) | 100 |
Scenario | Upstream (%TP Change) | Downstream (%Water Allocations Change) | TP Concentration (μg/L) | % Change | |||||
---|---|---|---|---|---|---|---|---|---|
Agriculture | Livestock Farming | Residential | Agriculture | Industry | Domestic | Other | |||
RCP4.5 (Inflow = −5.1%, Evaporation = +19%) | |||||||||
1 | ↑ | ↑ | 88.5–90.4 | (+5.2)–(+7.5) | |||||
2 | ↑ | ↑ | ↑ | 93.2–109.3 | (+10.8)–(+29.9) | ||||
3 | ↑ | 87.8–88.2 | (+4.4)–(+4.8) | ||||||
4 | ↓ | ↓ | ↓ | ↓ | 83.9–86.1 | (−0.3)–(+2.3) | |||
5 | ↓ | ↓ | ↓ | 73.0–82.8 | (−13.2)–(−1.6) | ||||
6 | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | 69.4–81.3 | (−17.5)–(−3.4) |
RCP8.5 (Inflow = −3.0%, Evaporation = +23%) | |||||||||
1 | ↑ | ↑ | 87.3–89.1 | (+3.8)–(+5.9) | |||||
2 | ↑ | ↑ | ↑ | 91.8–106.2 | (+9.1)–(+26.2) | ||||
3 | ↑ | 86.6–87.0 | (+2.9)–(+3.4) | ||||||
4 | ↓ | ↓ | ↓ | ↓ | 82.9–85.1 | (−1.5)–(+1.2) | |||
5 | ↓ | ↓ | ↓ | 72.1–81.7 | (−14.3)–(−2.9) | ||||
6 | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | 68.6–80.3 | (−18.5)–(−4.6) |
↑: +(10–30); ↓: −(10–30) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394. https://doi.org/10.3390/w11020394
Nazari-Sharabian M, Taheriyoun M, Ahmad S, Karakouzian M, Ahmadi A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water. 2019; 11(2):394. https://doi.org/10.3390/w11020394
Chicago/Turabian StyleNazari-Sharabian, Mohammad, Masoud Taheriyoun, Sajjad Ahmad, Moses Karakouzian, and Azadeh Ahmadi. 2019. "Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics" Water 11, no. 2: 394. https://doi.org/10.3390/w11020394
APA StyleNazari-Sharabian, M., Taheriyoun, M., Ahmad, S., Karakouzian, M., & Ahmadi, A. (2019). Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water, 11(2), 394. https://doi.org/10.3390/w11020394