The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation
Abstract
:1. Introduction
2. Preliminary Results
3. Existence, Uniqueness and Ill-Posedness of the Mild Solution
4. The Quasi-Boundary Regularization Method and the Convergence Rate
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi B 1986, 133, 425–430. [Google Scholar] [CrossRef]
- Staelen, R.H.D.; Hendy, A.S. Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput. Math. Appl. 2017, 74, 1166–1175. [Google Scholar] [CrossRef]
- Berkowitz, B.; Scher, H.; Silliman, S.E. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 2000, 36, 149–158. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 538–548. [Google Scholar]
- Luchko, Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 2012, 15, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, N.; Li, X.X.; Huang, C.Y. A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J. Inverse Ill-Posed Probl. 2019, 27, 609–621. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T.; Zhou, Y.B. Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 2013, 37, 8518–8532. [Google Scholar] [CrossRef]
- Wei, T.; Wang, J.G. A modified quasi-boundary value method for the backward time-fractional diffusion problem. Math. Model. Num. 2014, 48, 603–621. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T. Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. J. Comput. Appl. Math. 2015, 279, 277–292. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T. An iterative method for backward time-fractional diffusion problem. Numer. Methods Partial. Differ. Equ. 2014, 30, 2029–2041. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.L.; Li, Y.S. An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 2016, 32, 085003. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wei, T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 2013, 219, 5972–5983. [Google Scholar] [CrossRef]
- Liu, Y.; Rundell, W.; Yamamoto, M. Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. 2016, 19, 888–906. [Google Scholar] [CrossRef] [Green Version]
- Ismailov, M.I.; Cicek, M. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 2016, 40, 4891–4899. [Google Scholar] [CrossRef]
- Xiong, X.T.; Guo, H.B.; Li, X.H. An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 2012, 236, 4474–4484. [Google Scholar] [CrossRef]
- Babaei, A. Solving a time-fractional inverse heat conduction problem with an unknown nonlinear boundary condition. J. Math. Chem. 2019, 7, 85–106. [Google Scholar]
- Yang, F.; Wang, N.; Li, X.X. Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. J. Appl. Anal. Comput. 2020, 10, 514–529. [Google Scholar] [CrossRef]
- Varlamov, V. Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball. Studia Math. 2000, 142, 71–99. [Google Scholar] [CrossRef]
- Bogdan, K.; Grzywny, T.; Ryznar, M. Heat kernel estimates for the fractional Laplacian with Direchlet conditions. Ann. Probab. 2010, 38, 1901–1923. [Google Scholar] [CrossRef]
- Hu, Y.; Li, C.P.; Li, H.F. The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case. Chaos Solitons Fract. 2017, 102, 319–326. [Google Scholar] [CrossRef]
- Wang, J.L.; Xiong, X.T.; Cao, X.X. Fractional Tikhonov Regularization method for a Time-fractional Backward Heat Equation with a Fractional Laplacian. J. Partial. Differ. Equ. 2018, 31, 333–342. [Google Scholar]
- Yu, Q.; Liu, F.; Anh, V.; Turner, I. Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposion method. Int. J. Numer. Met. 2008, 74, 138–158. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Fan, P.; Li, X.X.; Ma, X.Y. Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinera Source. Mathematics 2019, 7, 865. [Google Scholar] [CrossRef] [Green Version]
- Tuan, N.H.; Huynh, L.N.; Ngoc, T.B.; Zhou, Y. On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 2019, 92, 76–84. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.C.; Li, X.X. Unknown source identification problem for space-time fractional diffusion equation: Optimal error bound analysis and regularization method. Inverse Probl. Sci. Eng. 2021, 29, 2040–2084. [Google Scholar] [CrossRef]
- Yang, F.; Wu, H.H.; Li, X.X. Three regularization methods for identifying the initial value of time fractional advection-dispersion equation. Comput. Appl. Math. 2022, 41, 1–38. [Google Scholar] [CrossRef]
0.05 | 0.10 | 0.15 | 0.20 | 0.25 | |
---|---|---|---|---|---|
0.0278 | 0.0538 | 0.0787 | 0.1086 | 0.1399 |
0.0001 | 0.0002 | 0.0004 | 0.0006 | 0.0008 | |
---|---|---|---|---|---|
0.1280 | 0.1281 | 0.1283 | 0.1284 | 0.1285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-G.; Chen, Y.-G.; Gao, Y.-X.; Yang, F.; Xu, J.-M.; Li, X.-X. The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation. Symmetry 2023, 15, 853. https://doi.org/10.3390/sym15040853
Li D-G, Chen Y-G, Gao Y-X, Yang F, Xu J-M, Li X-X. The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation. Symmetry. 2023; 15(4):853. https://doi.org/10.3390/sym15040853
Chicago/Turabian StyleLi, Dun-Gang, Yong-Gang Chen, Yin-Xia Gao, Fan Yang, Jian-Ming Xu, and Xiao-Xiao Li. 2023. "The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation" Symmetry 15, no. 4: 853. https://doi.org/10.3390/sym15040853
APA StyleLi, D. -G., Chen, Y. -G., Gao, Y. -X., Yang, F., Xu, J. -M., & Li, X. -X. (2023). The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation. Symmetry, 15(4), 853. https://doi.org/10.3390/sym15040853