Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures
Next Article in Journal
Discrete Dynamic Model of a Disease-Causing Organism Caused by 2D-Quantum Tsallis Entropy
Next Article in Special Issue
Subordination Results on the q-Analogue of the Sălăgean Differential Operator
Previous Article in Journal
Introducing Structural Symmetry and Asymmetry Implications in Development of Recent Pharmacy and Medicine
Previous Article in Special Issue
New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures

by
Maryam Salem Alatawi
1,
Waseem Ahmad Khan
2,* and
Cheon Seoung Ryoo
3
1
Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
2
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
3
Department of Mathematics, Hannam University, Daejeon 34430, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(8), 1675; https://doi.org/10.3390/sym14081675
Submission received: 24 July 2022 / Revised: 6 August 2022 / Accepted: 9 August 2022 / Published: 12 August 2022

Abstract

:
The main aim of this study is to define parametric kinds of λ -Array-type polynomials by using q-trigonometric polynomials and to investigate some of their analytical properties and applications. For this purpose, many formulas and relations for these polynomials, including some implicit summation formulas, differentiation rules, and relations with the earlier polynomials by utilizing some series manipulation method are derived. Additionally, as an application, the zero values of q-Array-type polynomials are presented by the tables and multifarious graphical representations for these zero values are drawn.
MSC:
11B68; 11B73; 05A15; 05A19

1. Introduction

Recently, many authors [1,2,3,4] have introduced and constructed generating functions for new families of special polynomials including two parametric kinds of polynomials, such as Bernoulli, Euler, and Genocchi. They have given the fundamental properties of these polynomials, and they have also established more identities and relations among trigonometric functions with two parametric kinds of special polynomials by using generating functions. Special polynomials have important roles in several subjects, such as mathematics, approximation theory, engineering, and theoretical physics. By applying the partial derivative operator to these generating functions, some derivative formulas and finite combinatorial sums involving the aforementioned polynomials and numbers are obtained. In addition, these special polynomials allow the derivation of different useful identities in a fairly straightforward way and help introduce new families of special polynomials. The array-type polynomials can be seen in combinatorial mathematics and play a crucial role in the principle and applications of arithmetic. Hence, a wide variety of idea and combinatorics experts have extensively studied their residences and received a series of exciting results (see [5,6,7,8,9]). By inspiring and motivating the above polynomials, in this study, we propose defining a parametric type of λ -array-type polynomials by introducing the two specific q-exponential generating functions. In addition, we show many formulations and family members for those polynomials, such as a few implicit summation formulas, differentiation policies, and correlations with the earlier polynomials with the aid of utilizing a collection manipulation approach.
The concern with q-calculus started in the 19th century due to its packages in various fields such as mathematics, physics, and engineering. The definitions and notations of q-calculus reviewed here are taken from [10,11].
The q-analogue of the shifted factorial ( α ) ω is given by
( α ; q ) 0 = 1 , ( α ; q ) ω = γ = 0 ω 1 ( 1 q γ α ) ω N .
The q-analogue of a complex number α and of the factorial function is given by
[ α ] q = 1 q α 1 q q C { 1 } ; α C ,
[ ω ] q ! = γ = 1 ω [ γ ] q = [ 1 ] q [ 2 ] q [ ω ] q = ( q ; q ) ω ( 1 q ) ω q 1 ; ω N ,
[ 0 ] q ! = 1 , q C ; 0 < q < 1 .
The Gauss q-binomial coefficient ω k q is given by
ω γ q = [ ω ] q ! [ γ ] q ! [ ω γ ] q ! = ( q ; q ) ω ( q ; q ) γ ( q ; q ) ω γ γ = 0 , 1 , , ω .
The q-analogue of the function ( x + y ) q ω is given by
( x + y ) q ω = γ = 0 ω ω γ q q γ ( γ 1 ) / 2 x ω γ y γ ω N 0 .
The q-analogues of exponential functions are given by
e q ( x ) = ω = 0 x ω [ ω ] q ! = 1 ( ( 1 q ) x ; q ) 0 < q < 1 ; x < 1 q 1 ,
E q ( x ) = ω = 0 q ω 2 [ ω ] q ! x ω = ( ( 1 q ) x ; q ) 0 < q < 1 ; x C .
These two functions are related by the following equation (see [10,11,12]):
e q ( x ) E q ( x ) = 1 .
Remark 1.
It is not difficult to see that [10]
e q ( x ) = 1 ( ( 1 q ) x ; q ) , 0 < q < 1 , x < 1
E q ( x ) = ( ( 1 q ) x ; q ) , 0 < q < 1 .
Definition 1.
Let x and y be two complex numbers and ω be a nonnegative integer. We define the q-addition in the following way (see [13]):
( x q y ) ω = γ γ ω γ q x γ y ω γ .
The q-derivative operator is defined by
D q f ( z ) = f ( q z ) f ( z ) q z z , 0 < q < 1 ,
where D q f ( 0 ) = f ( 0 ) provided that f is differentiable at x = 0 .
The q-derivative fulfills the following product and quotient rules:
D q , z ( f ( z ) g ( z ) ) = f ( z ) D q , z g ( z ) + g ( q z ) D q , z f ( z ) ,
D q , z f ( z ) g ( z ) = g ( q z ) D q , z f ( z ) f ( q z ) D q , z g ( z ) g ( z ) g ( q z ) .
Definition 2.
The q-trigonometric functions are
s i n q ( x ) = e q ( i x ) e q ( i x ) 2 i , S I N q ( x ) = E q ( i x ) E q ( i x ) 2 i ,
and
c o s q ( x ) = e q ( i x ) + e q ( i x ) 2 , C O S q ( x ) = E q ( i x ) + E q ( i x ) 2 ,
where S I N q ( x ) = s i n q 1 ( x ) , C O S q ( x ) = c o s q 1 ( x ) .
Lemma 1.
Let y R and i = 1 C . Then, we have
(1)
E q ( i t y ) = C O S q ( t y ) + i S I N q ( t y )
(2)
E q ( i t y ) = C O S q ( t y ) i S I N q ( t y ) ,
where S I N q ( x ) = s i n q 1 ( x ) , C O S q ( x ) = c o s q 1 ( x ) .
Lemma 2.
Let y R and i = 1 C . Then, we have
(1)
e q ( t x ) E q ( i t y ) = e q ( t ( x i y ) q ) ,
(2)
e q ( t x ) E q ( i t y ) = e q ( t ( x i y ) q ) .
The Apostol-type q-Bernoulli polynomials B ω , q ( α ) ( x ; λ ) of the order α , the Apostol-type q-Euler polynomials E ω , q ( α ) ( x ; λ ) of the order α , and the Apostol-type q-Genocchi polynomials G ω , q ( α ) ( x ; λ ) of the order α are defined as follows, respectively (see [14,15]):
t λ e q ( t ) 1 α e x t = ω = 0 B ω , q ( α ) ( x ; λ ) t ω [ ω ] q ! ( t + log λ ) < 2 π ,
2 λ e q ( t ) + 1 α e x t = ω = 0 E ω , q ( α ) ( x ; λ ) t ω [ ω ] q ! ( t + log λ ) < π ,
2 t λ e q ( t ) + 1 α e x t = ω = 0 G ω , q ( α ) ( x ; λ ) t ω [ ω ] q ! ( t + log λ < π ) ,
Clearly, we have
B ω , q ( α ) ( λ ) = B ω , q ( α ) ( 0 ; λ ) , E ω , q ( α ) ( λ ) = E ω , q ( α ) ( 0 ; λ ) , G n , q ( α ) ( λ ) = G ω , q ( α ) ( 0 ; λ ) .
Kang and Ryoo [13] introduced the q-Bernoulli and q-Euler polynomials, defined by the following respective equations:
t e q ( t ) 1 e q ( x t ) C O S q ( y t ) = j = 0 B j , q ( ( x i y ) q ) + B j ( ( x i y ) q ) 2 t j [ j ] q ! = j = 0 B j , q ( C ) ( x , y ) t j [ j ] q ! ,
t e q ( t ) 1 e q ( x t ) S I N q ( y t ) = j = 0 B j , q ( ( x i y ) q ) B j , q ( ( x i y ) q ) 2 i t j [ j ] q ! = j = 0 B j , q ( S ) ( x , y ) t j [ j ] q ! ,
and
2 e q ( t ) + 1 e q ( x t ) C O S q ( y t ) = j = 0 E j , q ( ( x i y ) q ) + E j , q ( ( x i y ) q ) 2 t j [ j ] q ! = j = 0 E j , q ( C ) ( x , y ) t j [ j ] q ! ,
2 e q ( t ) + 1 e q ( x t ) S I N q ( y t ) = j = 0 E j ( ( x i y ) q ) E j ( ( x i y ) ) q 2 i t j [ j ] q ! = j = 0 E j , q ( S ) ( x , y ) t j [ j ] q ! ,
Kang and Ryoo proved the following (see [13,16]):
e q ( x t ) C O S q ( y t ) = r = 0 C r , q ( x , y ) t r [ r ] q ! ,
and
e q ( x t ) S I N q ( y t ) = r = 0 S r , q ( x , y ) t r [ r ] q ! ,
where
C r , q ( x , y ) = j = 0 [ r 2 ] ( 1 ) j r 2 j q ( 1 ) j q 2 j 1 x r 2 j y 2 j ,
and
S r , q ( x , y ) = j = 0 [ r 1 2 ] r 2 j + 1 q ( 1 ) j q ( 2 j + 1 ) j x r 2 j 1 y 2 j + 1 .
For λ C , the generalized λ -Stirling numbers of the second kind S m n ( λ ) are given by the following (see [17,18]):
( λ e t 1 ) m m ! = ω = 0 S m ω ( λ ) t ω ω ! m N 0 = { 0 , 1 , 2 , , } .
Given that λ = 1 , Equation (19) reduces to the Stirling numbers of the second kind as follows:
( e t 1 ) m m ! = ω = m S 2 ( ω , m ) t ω ω ! .
The λ -array-type polynomials S m n ( x , λ ) are defined by the following (see [6]):
( λ e t 1 ) m m ! e x t = ω = 0 S m ω ( x , λ ) t ω ω ! .

2. λ -Array-Type Polynomials of Complex Variables

In this section, we consider the q-Cosine and q-Sine λ -array-type polynomials of complex variables and deduce some identities of these polynomials. First, we present the following definition:
( λ e q ( t ) 1 ) m m ! e q ( x t ) E q ( i t y ) = n = 0 S m , q n , ( x + i y ) q , λ t n [ n ] q ! .
On the other hand, we suppose that
e q ( x t ) E q ( i t y ) = e q ( x t ) ( C O S q ( y t ) + i S I N q ( y t ) ) .
Thus, by Equations (21) and (22), we have
n = 0 S m , q n , ( x + i y ) q , λ t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( x t ) E q ( i t y )
= ( λ e q ( t ) 1 ) m m ! e q ( x t ) ( C O S q ( y z ) + i S I N q ( y z ) ) ,
and
n = 0 S m , q n , ( x i y ) q , λ t n [ n ] q ! = ( λ e t 1 ) m m ! e q ( x t ) E q ( i t y )
= ( λ e t 1 ) m m ! e q ( x t ) ( C O S q ( y t ) i S I N q ( y t ) ) .
From Equations (23) and (24), we find
( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t ) = n = 0 S m , q n , ( x i y ) q , λ + S m , q n , ( x i y ) q , λ 2 t n [ n ] q ! ,
and
( λ e t 1 ) m m ! e q ( x t ) S I N q ( y t ) = n = 0 S m , q n , ( x i y ) q , λ S m , q n , ( x i y ) q , λ 2 t n [ n ] q ! .
Definition 3.
Let n 0 . We define two parametric kinds of q-Cosine λ-array-type polynomials S m , q ( c ) ( n , x , y , λ ) and q-Sine λ-array-type polynomials S m , q ( s ) ( n , x , y , λ ) , which for a nonnegative integer n are defined, respectively, by
( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t ) = n = 0 S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! ,
and
( λ e q ( t ) 1 ) m m ! e q ( x t ) S I N q ( y t ) = n = 0 S m , q ( s ) ( n , x , y , λ ) t n [ n ] q ! ,
Note that S m , q ( c ) ( n , 0 , 0 , λ ) = S m , q ( n , λ ) , S m , q ( s ) ( n , 0 , 0 , λ ) = 0 ( n 0 ) .
From Equations (25)–(28), we have
S m , q ( c ) ( n , x , y , λ ) = S m , q n , ( x i y ) q , λ + S m , q n , ( x i y ) q , λ 2 ,
S m , q ( s ) ( n , x , y , λ ) = S m , q n , ( x i y ) q , λ S m , q n , ( x i y ) q , λ 2 i .
Remark 2.
For x = 0 in Equations (27) and (28), we obtain a new type of q-Cosine λ-array-type polynomial S m , q ( c ) ( n , y , λ ) and q-Sine λ-array-type polynomial S m , q ( s ) ( n , y , λ ) , respectively, as
( λ e t 1 ) m m ! C O S q ( y t ) = j = 0 S m , q ( c ) ( n , y , λ ) t n [ n ] q ! ,
and
( λ e q ( t ) 1 ) m m ! S I N q ( y t ) = n = 0 S m , q ( s ) ( n , y , λ ) t n [ n ] q ! ,
It is clear that
S m , q ( c ) ( n , 0 , λ ) = S m , q ( n , λ ) , S m , q ( s ) ( n , 0 , λ ) = 0 , ( n 0 ) .
Remark 3.
Letting q 1 in Definition 3, we find two parametric types of λ-array-type polynomials as follows (see [6]):
( λ e t 1 ) m m ! e x t C O S ( y t ) = n = 0 S m ( c ) ( n , x , y , λ ) t n n ! ,
and
( λ e t 1 ) m m ! e x t S I N ( y t ) = n = 0 S m ( s ) ( n , x , y , λ ) t n n !
Now, we start with some basic properties of these polynomials.
Theorem 1.
If we let n 0 , then
S m , q ( c ) ( n , y ; u ; λ ) = v = 0 [ n 2 ] n + v 2 v q ( 1 ) v q ( 2 v 1 ) v y 2 v S m , q ( n 2 v , λ ) ,
and
S m , q ( s ) ( n , λ ) = v = 0 [ n 1 2 ] n + v 2 v + 1 q ( 1 ) v q ( 2 v + 1 ) v y 2 v + 1 S m , q ( n 2 v 1 , λ ) .
Proof. 
By Equations (31) and (32), we can derive the following equations:
n = 0 S m , q ( c ) ( n , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! C O S q ( y t )
= n = 0 S m , q ( n , λ ) t n [ n ] q ! v = 0 ( 1 ) v q ( 2 v 1 ) v η 2 v t v [ 2 v ] q ! .
= n = 0 v = 0 [ n 2 ] n + v 2 v q ( 1 ) v q ( 2 v 1 ) v η 2 v S m , q ( n 2 v , λ ) t n [ n ] q ! ,
and
n = 0 S m , q ( s ) ( n , y , λ ) t n [ n ] q ! = ( λ e t 1 ) m m ! S I N q ( y t )
= n = 0 v = 0 [ n 1 2 ] n 2 v + 1 q ( 1 ) v q ( 2 v + 1 ) v y 2 v + 1 S m , q ( j 2 v 1 , λ ) t n [ n ] q ! .
Therefore, by Equations (35) and (36), we find Equations (33) and (34). □
Theorem 2.
If we let n 0 , then
S m , q n , ( x i y ) q , λ = k = 0 n n k q ( x i y ) q k S m , q ( n k , λ )
= k = 0 n n k q ( i y ) k S m , q ( n k , x , λ ) ,
and
S m , q n , ( x i y ) q , λ = k 0 n n k q ( x i y ) q k S m , q ( n k , λ )
= k = 0 n n k q ( 1 ) k ( i y ) k S m , q ( n k , x , λ ) .
Proof. 
By using Equations (23) and (24), we obtained Equations (37) and (38), so we omitted the proof. □
Theorem 3.
If we let n 0 , then
S m , q ( c ) ( n , x , y , λ ) = k = 0 n n k q S m , q ( k , λ ) C n k , q ( x , y ) ,
and
S m , q ( s ) ( n , x , y , λ ) = k = 0 n n k q S m , q ( k , λ ) S n k , q ( x , y ) .
Proof. 
Consider the following:
n = 0 a n t n n ! k = 0 b k t k k ! = n = 0 k = 0 j a n k b k t n n ! .
Now, we have
n = 0 S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t )
= k = 0 S m , q ( k , λ ) t k [ k ] q ! n = 0 C n , q ( x , y ) t n [ n ] q !
= n = 0 k = 0 n n k q H m , q ( k , λ ) C n k , q ( x , y ) t n [ n ] q ! ,
which proves Equation (39). The proof of Equation (40) is similar. □
Theorem 4.
If we let n 0 , then
S m , q ( c ) ( n , x + s , y , λ ) = k = 0 n n k q S m , q ( c ) ( k , x , y , λ ) r n k ,
and
S m , q ( s ) ( n , x , y , λ ) = k = 0 n n k q S m , q ( s ) ( k , x , y , λ ) r n k .
Proof. 
By changing x with x + r in Equation (27), we have
n = 0 S m , q ( c ) ( n , x + s , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t )
= n = 0 S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! k = 0 r k t k [ k ] q !
= n = 0 k = 0 n n k q S m , q ( c ) ( k , x , y , λ ) r n k t n [ n ] q ! ,
which completes the proof for Equation (41). The result for Equation (42) can be proven in a similar manner. □
Theorem 5.
If we let n 1 , then
x S m , q ( c ) ( n , x , y , λ ) = [ n ] q S m , q ( c ) ( n 1 , x , y , λ ) ,
y S m , q ( c ) ( n , x , y , λ ) = [ n ] q S m , q ( s ) ( n 1 , x , q y , λ ) ,
and
x S m , q ( s ) ( n , x , y , λ ) = [ n ] q S m , q ( s ) ( n 1 , x , y , λ ) ,
y S m , q ( s ) ( n , x , y , λ ) = [ n ] q S m , q ( c ) ( n 1 , x , q y , λ ) .
Proof. 
Equation (27) yields
n = 1 x S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! x e q ( x t ) C O S q ( y t ) = n = 0 S m , q ( c ) ( n , x , y , λ ) t n + 1 [ n ] q !
= n = 1 S m , q ( c ) ( n 1 , x , y , λ ) t n [ ( n 1 ) ] q ! = n = 1 [ n ] q S m , q ( c ) ( n 1 , x , y , λ ) t n [ n ] q ! ,
which proves Equation (43). Equations (44)–(46) can be similarly derived. □
Theorem 6.
If we let N N * , then the following formula holds true:
S m , q ( c ) ( 2 x , y , λ ) = k = 0 n n k q S m , q ( c ) ( n , x , y , λ ) x n k ,
and
S m , q ( s ) ( 2 x , y , λ ) = k = 0 n n k q S m , q ( s ) ( n , x , y , λ ) x n k .
Proof. 
By using Definition 3, we can easily prove Equations (47) and (48). Therefore, we omitted the proof. □
Theorem 7.
The following relation holds true:
S m , q ( c ) ( n , x + 1 , y , λ ) = ( m + 1 ) S m , q ( c ) ( n , x + 1 , y , λ ) + S m , q ( c ) ( n , x , y , λ ) ,
and
S m , q ( s ) ( n , x + 1 , y , λ ) = ( m + 1 ) S m , q ( s ) ( n , x + 1 , y , λ ) + S m , q ( s ) ( n , x , y , λ ) .
Proof. 
By using Definition 3, we can easily obtain
λ n = 0 S m , q ( c ) ( n , x + 1 , y , λ ) t n [ n ] q ! = λ ( λ e q ( t ) 1 ) m m ! e q ( ( x + 1 ) t ) C O S q ( y t )
= ( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t ) λ e q ( t ) 1 + 1
= ( m + 1 ) ( λ e q ( t ) 1 ) m + 1 ( m + 1 ) ! e q ( x t ) C o s q ( y t ) + ( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t )
= ( m + 1 ) n = 0 S m , q ( c ) ( n , x + 1 , y , λ ) t n [ n ] q ! + n = 0 S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! .
Comparing the coefficients of t n [ n ] q ! on both sides of the last equality leads to the desired identity in Equation (49). The relation in Equation (50) follows easily in a similar way. □
Theorem 8.
The following summation formulas are true:
m = 0 n n m q C n m , q ( x , y ) = k = 0 n n k q B n k , q ( m ) ( λ ) S m , q ( c ) ( k , x , y , λ ) ,
and
m = 0 n n m q S n m , q ( x , y ) = k = 0 n n k q B n k , q ( m ) ( λ ) S m , q ( s ) ( k , x , y , λ ) .
Proof. 
Consider the following equality:
t λ e q ( t ) 1 m ( λ e q ( t ) 1 ) m m ! e q ( x t ) C O S q ( y t ) = t m m ! e q ( x t ) C O S q ( y t ) .
By making use of Equation (7) for x = 0 , through Equations (7) and (27), we find that
n = 0 B n , q ( m ) ( λ ) t n [ n ] q ! k = 0 S m , q ( c ) ( k , x , y , λ ) t k [ k ] q ! = t m m ! n = 0 C n , q ( x , y ) t n [ n ] q !
= n = 0 k = 0 n n k q B n k , q ( m ) ( λ ) S m , q ( c ) ( k , x , y , λ ) t n [ n ] q !
= n = 0 m = 0 n n m q C n m , q ( x , y ) t n [ n ] q ! .
Now, if we compare the coefficients of t n on both sides of Equation (53), we reach the formula in Equation (51). The relation in Equation (52) can be derived in a similar manner. □
Theorem 9.
Let x , y , and r be any real numbers. Then, we have
(1)
S m , q ( c ) ( n , ( x r ) q , y , λ ) + S m , q ( s ) ( n , ( x r ) q , y , λ )
= k = 0 n n l q q n l 2 r n l S m , q ( c ) ( n , x , y , λ ) + ( 1 ) n k S m , q ( s ) ( n , x , y , λ ) ,
(2)
S m , q ( s ) ( n , ( x r ) q , y , λ ) + S m , q ( c ) ( n , ( x r ) q , y , λ )
= k = 0 n n l q q n l 2 r n l S m , q ( s ) ( n , x , y , λ ) + ( 1 ) n k S m , q ( c ) ( n , x , y , λ ) .
Proof. 
By substituting ( ξ r ) q into ξ in the generating function of q-Cosine array-type polynomials, we have
n = 0 S m , q ( c ) ( n , ( x r ) q , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( t ( x r ) q ) C O S q ( y t )
= ( λ e q ( t ) 1 ) m m ! e q ( t x ) C O S q ( y t ) E q ( t r )
= n = 0 S m , q ( c ) ( n , x , y , λ ) t n [ n ] q ! l = 0 q l 2 r l t l [ l ] q !
= n = 0 l = 0 n n l q S m , q ( c ) ( n l , x , y , λ ) q l 2 r l t n [ n ] q ! .
Through a similar method, we can find the following equation:
n = 0 S m , q ( s ) ( n , ( x r ) q , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( t ( x r ) q ) S I N q ( y t )
( λ e q ( t ) 1 ) m m ! e q ( t x ) S I N q ( y t ) E q ( t r )
= n = 0 S m , q ( s ) ( n , x , y , λ ) t n [ n ] q ! l = 0 q l 2 ( 1 ) l r l t l [ l ] q !
= n = 0 l = 0 n j l q S m , q ( s ) ( n l , x , y , λ ) q l 2 ( 1 ) l r l t n [ n ] q ! .
By adding Equations (56) with (57), we can derive result (1) of Theorem 9.
For results (2) in Theorem 9, we also can find the following equations:
n = 0 S m , q ( s ) ( n , ( x r ) q , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( t ( x r ) q ) S I N q ( y t )
= ( λ e q ( t ) 1 ) m m ! e q ( t x ) S I N q ( y t ) E q ( t r ) ,
n = 0 S m , q ( c ) ( n , ( x r ) q , y , λ ) t n [ n ] q ! = ( λ e q ( t ) 1 ) m m ! e q ( t ( x r ) q ) C O S q ( y t )
( λ e q ( t ) 1 ) m m ! e q ( t x ) C O S q ( y t ) E q ( t r ) .
Using Equation (59) appropriately, we can find result (2) in Theorem 9. □
Corollary 1.
If we let n 0 , then
S m , q ( c ) n , ( x r ) q , y , λ + S m , q ( c ) n , ( x r ) q , y , λ
= k = 0 n n k q q k 2 r k S m , q ( c ) ( n k , x , y , λ ) + ( 1 ) k S m , q ( c ) ( n k , x , y , λ ) ,
and
S m , q ( s ) n , ( x r ) q , y , λ + S m , q ( s ) n , ( x r ) q , y , λ
= k = 0 n n k q q k 2 r k S m , q ( s ) ( n k , x , y , λ ) + ( 1 ) k S m , q ( s ) ( n k , x , y , λ ) .
Corollary 2.
For r = 1 in Corollary 1, we have
S m , q ( c ) n , ( x 1 ) q , y , λ + S m , q ( s ) n , ( x 1 ) q , y , λ
= k = 0 n n k q q k 2 r k S m , q ( c ) ( n k , x , y , λ ) + ( 1 ) k S m , q ( s ) ( n k , x , y , λ ) ,
and
S m , q ( s ) n , ( x 1 ) q , y , λ + S m , q ( c ) n , ( x 1 ) q , y , λ
= k = 0 n n k q q n k 2 r n k S m , q ( s ) ( k , x , y , λ ) + ( 1 ) n k S m , q ( c ) ( k , x , y , λ ) .

3. Symmetric Structures of the Approximate Roots for q-Cosine λ-Array-Type Polynomials and Their Application

In this section, certain zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) and beautiful graphical representations are shown. Let m = 5 .
A few of examples of these include
S 5 , q ( c ) ( 0 , x , y , λ ) = 1 120 ( 1 + λ ) 5 , S 5 , q ( c ) ( 1 , x , y , λ ) = x 120 + λ 24 + x λ 24 λ 2 6 x λ 2 12 + λ 3 4 + x λ 3 12 λ 4 6 x λ 4 24 + λ 5 24 + x λ 5 120 , S 5 , q ( c ) ( 2 , x , y , λ ) = x 2 120 + q y 2 120 + λ 24 + x 2 λ 24 q y 2 λ 24 λ 2 6 x 2 λ 2 12 + q y 2 λ 2 12 + λ 3 4 + x 2 λ 3 12 q y 2 λ 3 12 λ 4 6 x 2 λ 4 24 + q y 2 λ 4 24 + λ 5 24 + x 2 λ 5 120 q y 2 λ 5 120 + x λ [ 2 ] q ! 24 λ 2 [ 2 ] q ! 12 x λ 2 [ 2 ] q ! 6 + λ 3 [ 2 ] q ! 4 + x λ 3 [ 2 ] q ! 4 λ 4 [ 2 ] q ! 4 x λ 4 [ 2 ] q ! 6 + λ 5 [ 2 ] q ! 12 + x λ 5 [ 2 ] q ! 24 , S 5 , q ( c ) ( 3 , x , y , λ ) = x 3 120 + λ 24 + x 3 λ 24 λ 2 6 x 3 λ 2 12 + λ 3 4 + x 3 λ 3 12 λ 4 6 x 3 λ 4 24 + λ 5 24 + x 3 λ 5 120 x λ 2 [ 3 ] q ! 12 + λ 3 [ 3 ] q ! 12 + x λ 3 [ 3 ] q ! 4 λ 4 [ 3 ] q ! 6 x λ 4 [ 3 ] q ! 4 + λ 5 [ 3 ] q ! 12 + x λ 5 [ 3 ] q ! 12 + q x y 2 [ 3 ] q ! 120 [ 2 ] q ! + x λ [ 3 ] q ! 24 [ 2 ] q ! + x 2 λ [ 3 ] q ! 24 [ 2 ] q ! q y 2 λ [ 3 ] q ! 24 [ 2 ] q ! q x y 2 λ [ 3 ] q ! 24 [ 2 ] q ! λ 2 [ 3 ] q ! 6 [ 2 ] q ! x λ 2 [ 3 ] q ! 6 [ 2 ] q ! x 2 λ 2 [ 3 ] q ! 6 [ 2 ] q ! + q y 2 λ 2 [ 3 ] q ! 6 [ 2 ] q ! + q x y 2 λ 2 [ 3 ] q ! 12 [ 2 ] q ! + λ 3 [ 3 ] q ! 2 [ 2 ] q ! + x λ 3 [ 3 ] q ! 4 [ 2 ] q ! + x 2 λ 3 [ 3 ] q ! 4 [ 2 ] q ! q y 2 λ 3 [ 3 ] q ! 4 [ 2 ] q ! q x y 2 λ 3 [ 3 ] q ! 12 [ 2 ] q ! λ 4 [ 3 ] q ! 2 [ 2 ] q ! x λ 4 [ 3 ] q ! 6 [ 2 ] q ! x 2 λ 4 [ 3 ] q ! 6 [ 2 ] q ! + q y 2 λ 4 [ 3 ] q ! 6 [ 2 ] q ! + q x y 2 λ 4 [ 3 ] q ! 24 [ 2 ] q ! + λ 5 [ 3 ] q ! 6 [ 2 ] q ! + x λ 5 [ 3 ] q ! 24 [ 2 ] q ! + x 2 λ 5 [ 3 ] q ! 24 [ 2 ] q ! q y 2 λ 5 [ 3 ] q ! 24 [ 2 ] q ! q x y 2 λ 5 [ 3 ] q ! 120 [ 2 ] q ! .
We investigated the beautiful zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) by using a computer. We plotted the zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) = 0 for n = 40 (Figure 1).
In Figure 1 (top left), we chose λ = 3 , m = 5 , y = 2 , and q = 1 10 . In Figure 1 (top right), we chose λ = 3 , m = 5 , y = 2 , and q = 3 10 . In Figure 1 (bottom left), we chose λ = 3 , m = 5 , y = 2 , and q = 7 10 . In Figure 1 (bottom right), we chose λ = 3 , m = 5 , y = 2 , and q = 9 10 .
The stacks of zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) = 0 for 1 n 40 , forming a 3D structure, are presented in Figure 2.
In Figure 2 (top left), we plotted the stacks of zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) = 0 for 1 n 40 , q = 9 10 , λ = 3 , m = 5 , and y = 2 . In Figure 2 (top right), we drew the x and y axes but no z axis of the three dimensions. In Figure 2 (bottom left), we drew the y and z axes but no x axis of the three dimensions. In Figure 2 (bottom right), we drew the x and z axes but no y axis of the three dimensions.
We plotted the real zeros of the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) = 0 for 1 n 40 (Figure 3).
In Figure 3 (top left), we chose λ = 3 , m = 5 , y = 2 , and q = 1 10 . In Figure 3 (top right), we chose λ = 3 , m = 5 , y = 2 , and q = 3 10 . In Figure 3 (bottom left), we chose λ = 3 , m = 5 , y = 2 , and q = 7 10 . In Figure 3 (bottom right), we chose λ = 3 , m = 5 , y = 2 , and q = 9 10 .
Next, we calculated an approximate solution satisfying the q-Cosine λ -array-type polynomials S m , q ( c ) ( n , x , y , λ ) = 0 for q = 9 10 . The results are given in Table 1.

4. Symmetric Structures of the Approximate Roots for q-Sine λ-Array-Type Polynomials and Their Application

In this section, certain zeros of q-Sine- λ -array-type polynomials S m , q ( s ) ( n , x , y , λ ) and beautiful graphical representations are shown. Let m = 5 .
A few of these include the following:
S 5 , q ( s ) ( 0 , x , y , λ ) = 0 , S 5 , q ( s ) ( 1 , x , y , λ ) = y 120 + y λ 24 y λ 2 12 + y λ 3 12 y λ 4 24 + y λ 5 120 , S 5 , q ( s ) ( 2 , x , y , λ ) = x y [ 2 ] q ! 120 + y λ [ 2 ] q ! 24 + x y λ [ 2 ] q ! 24 y λ 2 [ 2 ] q ! 6 x y λ 2 [ 2 ] q ! 12 + y λ 3 [ 2 ] q ! 4 + x y λ 3 [ 2 ] q ! 12 y λ 4 [ 2 ] q ! 6 x y λ 4 [ 2 ] q ! 24 + y λ 5 [ 2 ] q ! 24 + x y λ 5 [ 2 ] q ! 120 , S 5 , q ( s ) ( 3 , x , y , λ ) = q 3 y 3 120 q 3 y 3 λ 24 + q 3 y 3 λ 2 12 q 3 y 3 λ 3 12 + q 3 y 3 λ 4 24 q 3 y 3 λ 5 120 + x y λ [ 3 ] q ! 24 y λ 2 [ 3 ] q ! 12 x y λ 2 [ 3 ] q ! 6 + y λ 3 [ 3 ] q ! 4 + x y λ 3 [ 3 ] q ! 4 y λ 4 [ 3 ] q ! 4 x y λ 4 [ 3 ] q ! 6 + y λ 5 [ 3 ] q ! 12 + x y λ 5 [ 3 ] q ! 24 x 2 y [ 3 ] q ! 120 [ 2 ] q ! + y λ [ 3 ] q ! 24 [ 2 ] q ! + x 2 y λ [ 3 ] q ! 24 [ 2 ] q ! y λ 2 [ 3 ] q ! 6 [ 2 ] q ! x 2 y λ 2 [ 3 ] q ! 12 [ 2 ] q ! + y λ 3 [ 3 ] q ! 4 [ 2 ] q ! + x 2 y λ 3 [ 3 ] q ! 12 [ 2 ] q ! y λ 4 [ 3 ] q ! 6 [ 2 ] q ! x 2 y λ 4 [ 3 ] q ! 24 [ 2 ] q ! + y λ 5 [ 3 ] q ! 24 [ 2 ] q ! + x 2 y λ 5 [ 3 ] q ! 120 [ 2 ] q ! .
We investigated the beautiful zeros of the q-Sine λ -array-type polynomials S m , q ( s ) ( n , x , y , λ ) by using a computer. We plotted the zeros of the q-Cosine λ -array-type polynomials S m , q ( s ) ( n , x , y , λ ) = 0 for n = 40 (Figure 4).
In Figure 4 (top left), we chose λ = 3 , m = 5 , y = 2 , and q = 1 10 . In Figure 4 (top right), we chose λ = 3 , m = 5 , y = 2 , and q = 3 10 . In Figure 4 (bottom left), we chose λ = 3 , m = 5 , y = 2 , and q = 7 10 . In Figure 4 (bottom right), we chose λ = 3 , m = 5 , y = 2 , and q = 9 10 .
The stacks of zeros of the q-Sine λ -array-type polynomials S m , q ( s ) ( n , x , y , λ ) = 0 for 1 n 40 , forming a 3D structure, are presented in Figure 5.
In Figure 5 (top left), we chose λ = 3 , m = 5 , y = 2 , and q = 1 10 . In Figure 5 (top right), we chose λ = 3 , m = 5 , y = 2 , and q = 3 10 . In Figure 5 (bottom left), we chose λ = 3 , m = 5 , y = 2 , and q = 7 10 . In Figure 5 (bottom right), we chose λ = 3 , m = 5 , y = 2 , and q = 9 10 .
Next, we calculated an approximate solution satisfying the q-Sine λ -array-type polynomials S m , q ( s ) ( n , x , y , λ ) = 0 for q = 9 10 . The results are given in Table 2.

5. Conclusions

In this paper, using the q-Cosine polynomials and q-Sine polynomials, we introduced novel types of q-extensions of λ -array-type polynomials, and the features obtained multifarious homes and identities by using some collection manipulation techniques. Furthermore, we computed the q-quintessential representations and q-derivative operator policies for those polynomials. Moreover, we determined the approximate root movements of the brand new mentioned polynomials in a complicated plane, utilizing the Newton technique and illustrating them in figures. The shape of the approximate roots will pop out in diverse ways, depending on the circumstances of the variables, and there is a desire for new methods and theorems associated with this subject matter to be created and proven. We would like to continue to observe this line of study in the future.

Author Contributions

Conceptualization, W.A.K., C.S.R.; Formal analysis, M.S.A.; Funding acquisition, M.S.A.; Investigation, W.A.K.; Methodology, W.A.K., C.S.R. and M.S.A.; Project administration, C.S.R.; Software, W.A.K. and C.S.R.; Writing—original draft, W.A.K.; Writing—review & editing, W.A.K. and M.S.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Alam, N.; Khan, W.A.; Ryoo, C.S. A note on Bell-based Apostol-type Frobenius-Euler polynomials of complex variable with its certain applications. Mathematics 2022, 10, 2109. [Google Scholar] [CrossRef]
  2. Muhiuddin, G.; Khan, W.A.; Duran, U.; Al-Kadi, D. Some identities of the multi poly-Bernoulli polynomials of complex variable. J. Funct. Spaces 2021, 2021, 7172054. [Google Scholar] [CrossRef]
  3. Muhiuddin, G.; Khan, W.A.; Al-Kadi, D. Construction on the degenerate poly-Frobenius-Euler polynomials of complex variable. J. Funct. Spaces 2021, 2021, 3115424. [Google Scholar] [CrossRef]
  4. Nisar, K.S.; Khan, W.A. Notes on q-Hermite based unified Apostol type polynomials. J. Interdiscip. Math. 2019, 22, 1185–1203. [Google Scholar] [CrossRef]
  5. Acikgöz, M.; Araci, S.; Cangül, I.N. A note on the modified q-Bernstein polynomials for functions of several variables and their reflections on q-volkenborn integration. Appl. Math. Comput. 2011, 2018, 707–712. [Google Scholar]
  6. Cakić, N.P.; Milovanović, G.V. On generalized Stirling number and polynomials. Math. Balk. 2004, 18, 241–248. [Google Scholar]
  7. Khan, W.A. A note on q-analogue of degenerate Catalan numbers associated with p-adic Integral on Z p . Symmetry 2022, 14, 1119. [Google Scholar] [CrossRef]
  8. Özger, F.; Aljimi, E.; Ersoy, M.T. Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators. Mathematics 2022, 10, 2027. [Google Scholar] [CrossRef]
  9. Khan, W.A. A note on q-analogues of degenerate Catalan-Daehee numbers and polynomials. J. Math. 2022, 2022, 9486880. [Google Scholar] [CrossRef]
  10. Jackson, H.F. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  11. Jackson, H.F. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 2013, 46, 253–281. [Google Scholar] [CrossRef]
  12. Kang, J.Y.; Khan, W.A. A new class of q-Hermite based Apostol type Frobenius Genocchi polynomials. Commun. Korean Math. Soc. 2020, 35, 759–771. [Google Scholar]
  13. Kang, J.Y.; Ryoo, C.S. Various structures of the roots and explicit properties of q-cosine Bernoulli polynomials and q-sine Bernoulli polynomials. Mathematics 2020, 8, 463. [Google Scholar] [CrossRef]
  14. Mahmudov, N.I. q-analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pinter addition theorems. Discret. Dyn. Nat. Soc. 2012, 2012, 169348. [Google Scholar] [CrossRef]
  15. Mahmudov, N.I. On a class of q-Bernoulli and q-Euler polynomials. Adv. Diff. Equ. 2013, 2013, 108. [Google Scholar] [CrossRef]
  16. Ryoo, C.S.; Kang, J.Y. Explicit properties of q-Cosine and q-Sine Euler polynomials containing symmetric structures. Symmetry 2020, 12, 1247. [Google Scholar] [CrossRef]
  17. Jamei, M.J.; Milovanović, G.V.; Daǧli, M.C. A generalization of the array type polynomials. Math. Moravica 2022, 26, 37–46. [Google Scholar] [CrossRef]
  18. Luo, Q.M.; Srivastava, H.M. Some generalization of the Apostol-Genocchi polynomials and Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217, 5702–5728. [Google Scholar] [CrossRef]
Figure 1. Zeros of S m , q ( c ) ( n , x , y , λ ) .
Figure 1. Zeros of S m , q ( c ) ( n , x , y , λ ) .
Symmetry 14 01675 g001
Figure 2. Zeros of S m , q ( c ) ( n , x , y , λ ) .
Figure 2. Zeros of S m , q ( c ) ( n , x , y , λ ) .
Symmetry 14 01675 g002
Figure 3. Real zeros of S m , q ( c ) ( n , x , y , λ ) .
Figure 3. Real zeros of S m , q ( c ) ( n , x , y , λ ) .
Symmetry 14 01675 g003
Figure 4. Zeros of S m , q ( s ) ( n , x , y , λ ) .
Figure 4. Zeros of S m , q ( s ) ( n , x , y , λ ) .
Symmetry 14 01675 g004
Figure 5. Zeros of S m , q ( s ) ( n , x , y , λ ) .
Figure 5. Zeros of S m , q ( s ) ( n , x , y , λ ) .
Symmetry 14 01675 g005
Table 1. Approximate solutions of S 5 , q ( c ) ( n , x , 2 , 3 ) = 0 , x R .
Table 1. Approximate solutions of S 5 , q ( c ) ( n , x , 2 , 3 ) = 0 , x R .
Degree nx
1−7.5000
2−9.1537,    −5.0963
3−9.9132,    −7.1792,    −3.2326
4−10.473,    −7.7237,    −5.9691,    −1.6272
5−10.887,    −8.3057,    −5.8697,    −5.4538,    −0.19684
6−11.200,    −8.7716,    −6.5985,    1.0889
7−11.438,    −9.1440,    −7.0712,    −5.2023,    2.2467
8−11.622,    −9.4417,    −7.4646,    −5.6413,    −4.2220, 3.2895
9−11.766,    −9.6751,    −7.8177,    −5.9369,    −4.6328, −3.5384, 4.2287
10−11.881,    −9.8531,    −8.1242,    −6.3032, −2.8841, 5.0745
Table 2. Approximate solutions of S 5 , q ( c ) ( n , x , 2 , 3 ) = 0 , x R .
Table 2. Approximate solutions of S 5 , q ( c ) ( n , x , 2 , 3 ) = 0 , x R .
Degree nx
2−7.5000
3−8.3866,    −5.8634
4−8.9328,    −6.6699,    −4.7223
5−9.3479,    −7.0555,    −5.5906,    −3.7985
6−9.6424,    −7.5919,    −2.9357
7−9.8507,    −7.9870,    −6.1091,    −2.1017
8−9.9922,    −8.3262,    −6.4196,    −5.1020, −1.3181
9−10.081,    −8.6115,    −6.7843,    −0.59552
10−10.127,    −8.8539,    −7.0942,    −5.4156, 0.065459
11−10.137,    −9.0620,    −7.3707,    −5.6846, −4.4208,    0.66754
12−10.115,    −9.2441,    −7.6166,    −5.9572, 1.2145
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Alatawi, M.S.; Khan, W.A.; Ryoo, C.S. Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures. Symmetry 2022, 14, 1675. https://doi.org/10.3390/sym14081675

AMA Style

Alatawi MS, Khan WA, Ryoo CS. Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures. Symmetry. 2022; 14(8):1675. https://doi.org/10.3390/sym14081675

Chicago/Turabian Style

Alatawi, Maryam Salem, Waseem Ahmad Khan, and Cheon Seoung Ryoo. 2022. "Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures" Symmetry 14, no. 8: 1675. https://doi.org/10.3390/sym14081675

APA Style

Alatawi, M. S., Khan, W. A., & Ryoo, C. S. (2022). Explicit Properties of q-Cosine and q-Sine Array-Type Polynomials Containing Symmetric Structures. Symmetry, 14(8), 1675. https://doi.org/10.3390/sym14081675

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop