The Fractional Tikhonov Regularization Method to Identify the Initial Value of the Nonhomogeneous Time-Fractional Diffusion Equation on a Columnar Symmetrical Domain
Abstract
:1. Introduction
2. Preliminary Results
3. The Exact Solution and Regularization Strategies
4. The Priori Error Estimate
5. The Posteriori Error Estimation
- (a) is a continuous function;
- (b)
- (c)
- (d) is a strictly increasing function.
6. Numerical Examples
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, W.; Fu, C.L.; Qian, Z. A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Math. Comput. Simulat. 2007, 75, 97–112. [Google Scholar] [CrossRef]
- Cheng, W.; Fu, C.L.; Qian, Z. Two regularization methods for a spherically symmetric inverse heat conduction problem. Appl. Math. Model. 2008, 32, 432–442. [Google Scholar] [CrossRef]
- Cheng, W.; Ma, Y.J. A modified quasi-boundary value method for solving the radially symmetric inverse heat conduction problem. Appl. Anal. 2016, 96, 2505–2515. [Google Scholar] [CrossRef]
- Cheng, W. Stability estimate and regularization for a radially symmetric inverse heat conduction problem. Bound. Value Probl. 2017, 2017, 53. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Sun, Y.R.; Li, X.X.; Huang, C.Y. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer. Algorithms 2019, 82, 623–639. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Li, X.X.; Ren, Y.P. A posteriori truncated regularization method for identifying unknown heat source on a spherical symmetric domain. Adv. Differ. Equ. 2017, 2017, 263. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Y.P.; Li, X.X. Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl. Sci. En. 2018, 26, 1109–1129. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.R.; Li, X.X.; Ma, C.Y. The truncation regularization method for identifying the initial value of heat equation on a spherical symmetric domain. Bound. Value Probl. 2018, 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.N.; Luo, G.W.; Deng, Z.C. Numerical identification of source terms for a two dimensional heat conduction problem in polar coordinate system. Appl. Math. Model. 2013, 37, 939–957. [Google Scholar]
- Xiong, X.T.; Ma, X.J. A Backward Identifying Problem for an Axis-Symmetric Fractional Diffusion Equation. Math. Model. Anal. 2017, 22, 311–320. [Google Scholar] [CrossRef]
- Djerrar, I.; Alem, L.; Chorfi, L. Regularization method for the radially symmetric inverse heat conduction problem. Bound. Value Probl. 2017, 2017, 159. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Xu, X. An inverse diffusivity problem for the helium production-diffusion equation. Inverse Probl. 2012, 28, 085002. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problem; Kluwer Academic: Boston, MA, USA, 1996. [Google Scholar]
- Liu, J.J.; Yamamoto, M. A backward problem for the time-fractional diffusion equation. Appl. Anal. 2010, 89, 1769–1788. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T.; Zhou, Y.B. Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 2013, 37, 8518–8532. [Google Scholar] [CrossRef]
- Li, Y.S.; Wei, T. Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation. Appl. Math. Comput. 2018, 36, 257–271. [Google Scholar]
- Shavkat, A.; Ravshan, A. The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. J. Inverse Ill-Pose Probl. 2020, 28, 651–658. [Google Scholar]
- Wang, J.G.; Zhou, Y.B.; Wei, T. Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 2013, 68, 39–57. [Google Scholar] [CrossRef]
- Prakash, R.; Hrizi, M.; Novotny, A.A. A noniterative reconstruction method for solving a time-fractional inverse source problem from partial boundary measurements. Inverse Probl. 2022, 38, 015002. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.L.; Li, Y.S. An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 2016, 32, 085003. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.C.; Li, X.X. Unknown source identification problem for space-time fractional diffusion equation: Optimal error bound analysis and regularization method. Inverse Probl. Sci. Eng. 2021, 29, 2040–2084. [Google Scholar] [CrossRef]
- Yang, F.; Wu, H.H.; Li, X.X. Three regularization methods for identifying the initial value of time fractional advection-dispersion equation. Comput. Appl. Math. 2022, 41, 60. [Google Scholar] [CrossRef]
- Liao, K.F.; Wei, T. Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously. Inverse Probl. 2019, 35, 115002. [Google Scholar] [CrossRef]
- Wei, T.; Xian, J. Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition. J. Comput. Appl. Math. 2022, 404, 11390. [Google Scholar] [CrossRef]
- Yan, X.B.; Zhang, Y.X.; Wei, T. Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation. J. Comput. Appl. Math. 2021, 393, 113497. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Li, X.X. A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J. Inverse Ill-Pose Probl. 2019, 27, 609–621. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, P.; Li, X.X.; Ma, X.Y. Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain. Adv. Differ. Equ. 2020, 2020, 128. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Li, X.X. Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. J. Appl. Anal. Comput. 2020, 10, 514–529. [Google Scholar] [CrossRef]
- Xue, X.M.; Xiong, X.T. A fractional Tikhonov regularization method for indentifing a space-dependent source in the time-fractiona diffusion equation. Appl. Math. Comput. 2019, 349, 292–303. [Google Scholar]
- Gong, X.H.; Wei, T. Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation. Inverse Probl. Sci. Eng. 2019, 27, 1577–1594. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, Y. The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 2018, 75, 3632–3648. [Google Scholar] [CrossRef]
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | |
0.2844 | 0.2907 | 0.3234 | 0.3792 | 0.4393 | 0.4761 | 0.5335 | 1.3396 |
0.0001 | 0.00008 | 0.00006 | 0.00004 | 0.00002 | 0.00001 | |
0.2857 | 0.2839 | 0.2821 | 0.2816 | 0.2812 | 0.2811 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-G.; Yang, F.; Li, X.-X.; Li, D.-G. The Fractional Tikhonov Regularization Method to Identify the Initial Value of the Nonhomogeneous Time-Fractional Diffusion Equation on a Columnar Symmetrical Domain. Symmetry 2022, 14, 1633. https://doi.org/10.3390/sym14081633
Chen Y-G, Yang F, Li X-X, Li D-G. The Fractional Tikhonov Regularization Method to Identify the Initial Value of the Nonhomogeneous Time-Fractional Diffusion Equation on a Columnar Symmetrical Domain. Symmetry. 2022; 14(8):1633. https://doi.org/10.3390/sym14081633
Chicago/Turabian StyleChen, Yong-Gang, Fan Yang, Xiao-Xiao Li, and Dun-Gang Li. 2022. "The Fractional Tikhonov Regularization Method to Identify the Initial Value of the Nonhomogeneous Time-Fractional Diffusion Equation on a Columnar Symmetrical Domain" Symmetry 14, no. 8: 1633. https://doi.org/10.3390/sym14081633
APA StyleChen, Y. -G., Yang, F., Li, X. -X., & Li, D. -G. (2022). The Fractional Tikhonov Regularization Method to Identify the Initial Value of the Nonhomogeneous Time-Fractional Diffusion Equation on a Columnar Symmetrical Domain. Symmetry, 14(8), 1633. https://doi.org/10.3390/sym14081633