Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction
Abstract
:1. Introduction
- Initially, an edge-preserving guided filter was employed on the fundus image to enhance and preserve the blood vessels.
- One of the special properties of a retinal image is that the vessels generally have small curvatures that can be approached by piecewise linear segments. The matched filter concept identifies the piecewise linear segments of blood vessels. Therefore, in subsequent stages, a matched filter was employed on the guided enhanced images to detect small curvatures.
- Mean-C thresholding was used in segmentation.
- The experiment showed that the suggested method is simultaneously able to enhance and identify the curvatures of retinal images by properly preserving the edges, thereby achieving better results than those of the original matched filter.
2. Materials and Methods
2.1. Materials
2.1.1. Dataset
2.2. Methods
2.2.1. Matched Filter
2.2.2. Fast Guided Filter
Algorithm 1. Algorithm for Guided Filter |
Input parameters: A is the input filtering image, P is the guidance image, r is the radius, and is the regularization. Output parameter: Q is the filtering output. 1. 2. 3. 4. 5. |
2.2.3. Preprocessing
2.2.4. Parameters of the Fast Guided Filter
2.2.5. Parameters of the Matched Filter
2.2.6. Mean Global-Based Hysteresis Thresholding
- Mean-C thresholding
- II.
- Hysteresis thresholding
- III.
- Gray thresholding
- IV.
- Mean Global-based on Hysteresis (MGBH) thresholding
- An averaging filter of window size w*w was applied on the fast guided and matched filter transformed image
- By subtraction of the average filtered image from the enhanced image, the difference image was generated.
- Two threshold values, Tglobal and Tlow, were generated.
- Tglobal was the gray threshold value calculated by the Otsu method and was experimentally selected
- Each pixel value of the difference image was compared with Tglobal and Tlow
- If the pixel gray value was higher than Tglobal, it was replaced as 1;
- If the pixel gray value was lower than Tlow, it was replaced as 0;
- If the pixel value was between Tlow and Tglobal and had at least one pixel in its 8-neighborhood that was greater than Tglobal then it was also replaced by 1;
- Otherwise, the pixel value was replaced by ′.
Algorithm 2. Algorithm of MGBH thresholding |
Input: Optic disc removed image (Iod) Output: Vessel segmented image (Iseg) Parameters: H: Horizontal dimension of image (Iod) V: Vertical dimension of image (Iod) Tlow: 0.013 Thigh: 0.155 Start i = 1, j = i for i < H do for j < V do if Iod(i, j) < Tlow Iseg(i, j)←0; or else if Iod > Thigh Iseg(i, j)←1; or else if Iod > Tlow & & Thigh ∈ NB8 (Iod (i, j)) Iseg(i, j)←1; or else Iseg(i, j)←0; j←j + 1; end for i←i + 1; end for |
2.2.7. Post-Processing
3. Results and Discussion
3.1. Performance Measures
3.2. Comparison with State-of-Theart Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanski, J.J. Clinical Ophthalmology: A Systematic Approach; Butterworth Heinemann: Boston, MA, USA, 2007; Volume 629. [Google Scholar]
- Leung, H.; Wang, J.J.; Rochtchina, E.; Wong, T.Y.; Klein, R.; Mitchell, P. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J. Hypertens. 2004, 22, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, T.; Amador, A.; Zinman, B. Diabetic retinopathy and diabetic macular edema pathophysiology, screening, and novel therapies. Diabetes Care 2003, 26, 2653–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, M.K.; Dandapat, S. Differential entropy in wavelet sub-band for assessment of glaucoma. Int. J. Imaging Syst. Techol. 2012, 22, 161–165. [Google Scholar] [CrossRef]
- Nath, M.K.; Dandapat, S. Multiscale ICA for fundus image analysis. Int. J. Imaging Syst. Technol. 2013, 23, 327–337. [Google Scholar] [CrossRef]
- Nath, M.K.; Dandapat, S.; Barna, C. Automatic detection of blood vessels and evaluation of retinal disorder from colour fundus images. J. Intell. Fuzzy Syst. 2020, 38, 1–12. [Google Scholar]
- Mitchell, P.; Leung, H.; Wang, J.J.; Rochtchina, E.; Lee, A.J.; Wong, T.Y.; Klein, R. Retinal vessel diameter and open-angle glaucoma: The blue mountains eye study. Ophthalmology 2005, 112, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Giancardo, L.; Meriaudeau, F.; Karnowski, T.P.; Li, Y.; Tobin, K.W.; Chaum, E. Automatic retina exudates segmentation without a manually labelled training set. In Proceedings of the 2011 IEEE International Symposium Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 30 March–2 April 2011; pp. 1396–1400. [Google Scholar] [CrossRef] [Green Version]
- Sreejini, K.S.; Govindan, V.K. Severity grading of DME from retina images: A combination of PSO and FCM with bayes classifier. Int. J. Comput. Appl. 2013, 81, 11–17. [Google Scholar]
- Sreejini, K.S.; Govindan, V.K. Automatic grading of severity of diabetic macular edema using color fundus images. In Proceedings of the Third International Conference on Advances in Computing and Communications (ICACC), Cochin, India, 12 December 2013; pp. 177–180. [Google Scholar]
- Ghosh, G.; Kavita; Anand, D.; Verma, S.; Rawat, D.B.; Shafi, J.; Marszałek, Z.; Woźniak, M. Secure Surveillance Systems Using Partial-Regeneration-Based Non-Dominated Optimization and 5D-Chaotic Map. Symmetry 2021, 13, 1447. [Google Scholar] [CrossRef]
- Sood, M.; Verma, S.; Panchal, V.K.; Kavita. Optimal Path Planning using Swarm Intelligence based Hybrid Techniques. J. Comput. Theor. Nanosci. (JCTN) 2019, 16, 3717–3727. [Google Scholar] [CrossRef]
- Li, Z.; Verma, S.; Jin, M. Power Allocation in Massive MIMO-HWSN Based on the Water-Filling Algorithm. Wirel. Commun. Mob. Comp. 2021, 2021, 8719066. [Google Scholar] [CrossRef]
- Chudhery, M.A.Z.; Safdar, S.; Huo, J.; Rehman, H.-U.; Rafique, R. Proposing and Empirically Investigating a Mobile-Based Outpatient Healthcare Service Delivery Framework Using Stimulus–Organism–Response Theory. IEEE Trans. Eng Mang. 2021, 1–14. [Google Scholar] [CrossRef]
- Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Jhaveri, R.H.; Chowdhary, C.L. Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research. Mathematics 2021, 9, 690. [Google Scholar] [CrossRef]
- Rani, G.; Oa, M.G.; Dhaka, V.S.; Pradhan, N.; Verma, S.; Joel, J.P.C. Applying deep learning-based multi-modal for detection of coronavirus. Multi. Syst. 2021, 18, 1–24. [Google Scholar] [CrossRef]
- Sharma, T.; Verma, S. Kavita. Prediction of heart disease ussing Cleveland dataset: A machine learning approach. Int. J. Rec. Res. Asp. 2017, 4, 17–21. [Google Scholar]
- Sharma, T.; Srinivasu, P.N.; Ahmed, S.; Alhumam, A.; Kumar, A.B.; Ijaz, M.F. An AW-HARIS based automated segmentation of human liver using CT images. CMC-Comp. Mater. Contin. 2021, 69, 3303–3319. [Google Scholar]
- Singh, A.P.; Pradhan, N.R.; Luhach, A.K.; Agnihotri, S.; Jhanjhi, N.Z.; Verma, S.; Ghosh, U.; Roy, D.S. A novel patientcentric architectural frame work for blockchain-enabled health care applications. IEEE Trans. Ind. Inform. 2021, 17, 5779–5789. [Google Scholar] [CrossRef]
- Li, W.; Chai, Y.; Khan, F.; Jan, S.R.U.; Verma, S.; Menon, V.G.; Li, X.A. Comprehensive survey on machine learning-based big data analytics for IOT-enabled healthcare system. Mob. Netw. Appl. 2021, 26, 234–252. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven cervical cancer prediction model with outlier detection and over sampling methods. Sensors 2020, 20, 2809. [Google Scholar] [CrossRef] [PubMed]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Singh, P.K.; Ijaz, M.F.; Shafi, J.; Sarkar, R. A Tri-stage Wrapper-Filter feature selection framework for disease classification. Sensors 2021, 21, 5571. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.F.; Alfian, G.; Syafrudin, M.; Rhee, J. Hybrid Prediction Model for Type 2 diabetes and hypertension using DBSCAN based outlier detection. Synthetic Minority Over Sampling Technique (SMOTE), and Random Forest. Appl. Sci. 2018, 8, 1325. [Google Scholar] [CrossRef] [Green Version]
- Rajput, N.; Gaul, D.S. Guided filter technique: Various aspects in image processing. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 28, 1768–1783. [Google Scholar]
- He, K.; Sun, J.; Tang, X. A technique for guided image filstering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1–13. [Google Scholar] [CrossRef]
- He, K.; Sun, J. Fast guided filter. arXiv 2015, arXiv:1505.00996. [Google Scholar]
- Hasegawa, T.; Tomizawa, R.; Yamauchi, Y.; Yamashita, T.; Fujiyoshi, H. Guided filtering using reflected IR image for improving quality of depth image. In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP 2016), Rome, Italy, 27–29 February 2016; pp. 33–39. [Google Scholar] [CrossRef] [Green Version]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Sansone, C.; Verdoliva, L. Guided filtering for PRNU-based localization of small-size image forgeries. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 4–9 May 2014; pp. 6231–6235. [Google Scholar]
- Zhu, S.; Yu, Z. Self-guided filter for image denoising. IET Imaging Process. 2020, 14, 2561–2566. [Google Scholar] [CrossRef]
- Lu, Z.; Long, B.; Li, K.; Lu, F. Effective guided image filtering for contrast enhancement. IEEE Signal Proc. Lett. 2018, 25, 1585–1589. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Z.; Gu, Z.; Fu, H.; Wong, D.W.K.; Li, J. Structure-preserving guided retinal image filtering and its application for optic disc analysis. IEEE Trans. Med. Imaging 2018, 10, 2536–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zana, F.; Klein, J.-C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. Imaging Process. IEEE Trans. 2001, 10, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Fraz, M.M.; Barman, S.A.; Remagnino, P.; Hoppe, A.; Basit, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, G.C. An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput. Methods Prog. Biomed. 2012, 108, 600–616. [Google Scholar] [CrossRef]
- Mahapatra, S.; Jena, U.; Dash, S. Curvelet Transform and ISODATA thresholding for retinal vessel extraction. In Proceedings of International Conference on Communication, Circuits, and Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 195–203. [Google Scholar] [CrossRef]
- Kande, G.B.; Venkata, P.S.; Savithri, S.T. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Syst. 2010, 4, 849–858. [Google Scholar] [CrossRef]
- Vlachos, M.; Dermatas, E. Multi-scale retina vessel segmentation using line tracking. Comp. Med. Imaging Graph. 2010, 34, 213–227. [Google Scholar] [CrossRef]
- Tchindaa, B.S.; Tchiotsopa, D.; Noubomb, M.; Dorrc, V.L.; Wolf, D. Retinal blood vessels segmentation using classical edge detection filters and the neural network. Inform. Med. Unlocked 2021, 23, 100521. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, J.; Parida, P.; Bhoi, N. Retinal vessel extraction from fundus images using enhancement filtering and clustering. Electron. Comp. Vision Imaging Anal. 2020, 19, 38–52. [Google Scholar]
- Dash, S.; Senapati, M.R.; Sahu, P.K.; Chowdary, P.S.R. Illumination normalized based technique for retinal blood vessel segmentation. Int. J. Imaging Syst. Technol. 2020, 31, 1–13. [Google Scholar] [CrossRef]
- Cui, H.; Xia, Y.; Zhang, Y. 2D and 3D vascular structures enhancement via improved vesselness filter and vessel enhancing diffusion. IEEE Access. 2019, 7, 123969–123979. [Google Scholar] [CrossRef]
- Dash, S.; Senapati, M.R. Enhancing detection of retinal blood vessels by combined approach of DWT, Tyler Coye and Gamma correction. Biomed. Signal Process. Control 2020, 57, 101740. [Google Scholar] [CrossRef]
- Ooi, A.Z.H.; Embong, Z.; Hamid, A.I.A.; Zainon, R.; Wang, S.L.; Ng, T.F.; Hamzah, R.A.; Teoh, S.S.; Ibrahim, H. Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors 2021, 21, 6380. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, H.; Ma, Z.; Zhang, J. Bi-SANet-Bilateral network with scae attention for retinal vessel segmentation. Symmetry 2021, 13, 1820. [Google Scholar] [CrossRef]
- Dash, S.; Verma, S.; Khan, M.; Wozniak, M.; Shafi, J.; Ijaz, M.F. A hybrid method to enhance thick and thin vessels for blood vessel segmentation. Diagnostics 2021, 11, 2017. [Google Scholar] [CrossRef]
- Kovacs, G.; Fazekas, A. A new baseline for retinal vessel segmentation: Numerical identification and correction of methodological inconsistencies affecting 100+ papers. Med. Imaging Anal. 2021, 75, 102300. [Google Scholar] [CrossRef] [PubMed]
- Mudassar, A.A.; Butt, S. Extraction of blood vessels in retinal image using four different techniques. J. Med. Image 2013, 2013, 408120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subudhi, A.; Pattnaik, S.; Sabut, S. Blood vessel extraction of diabetic retinopathy using optimized enhanced images and matched filter. J. Med. Imaging 2016, 3, 044003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memari, N.; Ramli, A.R.; Saripan, M.I.B.; Mashohor, S.; Moghbel, M. Retinal blood vessel segmentation by using matched filtering and fuzzy C-means clustering with integrated level set method. J. Med. Biolog. Eng. 2019, 39, 713–731. [Google Scholar] [CrossRef] [Green Version]
- AlSaeed, D.; Bouridane, A.; Jafri, R.; Al-Ghreimil, N.; Al-Baity, H.H.; Alhudhud, G. A novel blood vessel extraction using multiscale matched filters with local features and adaptive thresholding. Biosci. BioTechol. Res. Commun. 2020, 13, 1104–1113. [Google Scholar] [CrossRef]
- Sreejini, K.S.; Govindan, V.K. Improved multiscale matched filter for retinal vessel segmentation using PSO algorithm. Egypt. Inform. J. 2015, 16, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Chakraborti, T.; Jha, D.K.; Chowdhury, A.S.; Jiang, X. A self-adaptive matched filter for retinal blood vessel detection. Mach. Vision Appl. 2014, 26, 1–14. [Google Scholar] [CrossRef]
- Mohammad, A.R.; Munib, Q.; Muhammad, A. An improved matched filter for blood vessel detection of digital retinal images. Comp. Biol. Med. 2007, 37, 262–267. [Google Scholar]
- L-Rawi, M.; Karajeh, H. Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images. Comp. Methods Programs Biomed. 2007, 87, 248–253. [Google Scholar] [CrossRef]
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Cinsdikici, M.G.; Aydin, D. Detection of blood vessels in ophthalmoscope images using mf/ant (matched filter/ant colony) algorithm. Comp. Methods Programs Biomed. 2009, 96, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; You, J.; Zhang, D. A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inform. Techol. Biomed. 2009, 13, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, C.; Flynn, J.; O’Keefe, M.; Cahill, M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 2002, 6, 407–429. [Google Scholar] [CrossRef]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef]
- Owen, C.G.; Rudnicka, A.R.; Mullen, R.; Barman, S.A.; Monekosso, D.; Whincup, P.H.; Ng, J.; Paterson, C. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program. Ophthalmol. Vis. Sci. 2009, 50, 2004–2010. [Google Scholar] [CrossRef] [Green Version]
Retinal Image | Sn | Ac | Spc |
---|---|---|---|
1 | 0.652615 | 0.935422 | 0.955843 |
2 | 0.648358 | 0.932319 | 0.954067 |
3 | 0.586325 | 0.92253 | 0.952038 |
4 | 0.577753 | 0.932474 | 0.95722 |
5 | 0.540858 | 0.931416 | 0.961093 |
6 | 0.602628 | 0.924282 | 0.960513 |
7 | 0.578639 | 0.927306 | 0.95283 |
8 | 0.564393 | 0.919887 | 0.949272 |
9 | 0.567892 | 0.930607 | 0.960517 |
10 | 0.583006 | 0.93401 | 0.956754 |
11 | 0.572955 | 0.925894 | 0.948486 |
12 | 0.620253 | 0.927919 | 0.949866 |
13 | 0.554698 | 0.925467 | 0.956691 |
14 | 0.662106 | 0.930816 | 0.948576 |
15 | 0.611671 | 0.931461 | 0.942728 |
16 | 0.543486 | 0.930143 | 0.954699 |
17 | 0.592309 | 0.927191 | 0.953884 |
18 | 0.61276 | 0.93425 | 0.950661 |
19 | 0.709035 | 0.94322 | 0.957427 |
20 | 0.668411 | 0.93571 | 0.952476 |
Average | 0.60250 | 0.93011 | 0.95372 |
Retinal Image | Sn | Ac | Spc |
---|---|---|---|
1 | 0.72697 | 0.964186 | 0.988121 |
2 | 0.741699 | 0.959064 | 0.991171 |
3 | 0.656036 | 0.959321 | 0.989514 |
4 | 0.688212 | 0.962248 | 0.996576 |
5 | 0.674313 | 0.959749 | 0.994222 |
6 | 0.688274 | 0.960888 | 0.98844 |
7 | 0.673521 | 0.95813 | 0.991324 |
8 | 0.677735 | 0.95905 | 0.980273 |
9 | 0.691451 | 0.960676 | 0.988787 |
10 | 0.680402 | 0.959322 | 0.991595 |
11 | 0.696131 | 0.963739 | 0.993439 |
12 | 0.695683 | 0.96474 | 0.98635 |
13 | 0.667311 | 0.959558 | 0.992345 |
14 | 0.728905 | 0.968353 | 0.984411 |
15 | 0.785297 | 0.961192 | 0.988134 |
16 | 0.682723 | 0.960867 | 0.991298 |
17 | 0.677656 | 0.959843 | 0.983896 |
18 | 0.743536 | 0.958771 | 0.988546 |
19 | 0.786161 | 0.966266 | 0.989534 |
20 | 0.7245 | 0.960565 | 0.983755 |
Average | 0.7043 | 0.9613 | 0.9890 |
Retinal Image | Sn | Ac | Spc |
---|---|---|---|
1 | 0.597623 | 0.934228 | 0.959463 |
2 | 0.603603 | 0.922594 | 0.937231 |
3 | 0.610407 | 0.928822 | 0.952509 |
4 | 0.588445 | 0.915251 | 0.934539 |
5 | 0.616166 | 0.925796 | 0.918664 |
6 | 0.629086 | 0.922185 | 0.944564 |
7 | 0.591414 | 0.937424 | 0.966651 |
8 | 0.621842 | 0.932651 | 0.925845 |
9 | 0.633895 | 0.931858 | 0.941342 |
10 | 0.621896 | 0.938575 | 0.927733 |
11 | 0.668227 | 0.928021 | 0.937018 |
12 | 0.615647 | 0.925638 | 0.948131 |
13 | 0.608667 | 0.934479 | 0.95321 |
14 | 0.61161 | 0.936905 | 0.950602 |
Average | 0.6156 | 0.9296 | 0.9426 |
Retinal Image | Sn | Ac | Spc |
---|---|---|---|
1 | 0.698532 | 0.959214 | 0.980642 |
2 | 0.68785 | 0.960164 | 0.976853 |
3 | 0.678693 | 0.962176 | 0.979854 |
4 | 0.68954 | 0.958357 | 0.980634 |
5 | 0.758635 | 0.967277 | 0.978648 |
6 | 0.698491 | 0.960751 | 0.984740 |
7 | 0.695218 | 0.958514 | 0.97771 |
8 | 0.728492 | 0.962301 | 0.976691 |
9 | 0.757438 | 0.958165 | 0.981965 |
10 | 0.686517 | 0.963421 | 0.980794 |
11 | 0.767439 | 0.960126 | 0.985526 |
12 | 0.688618 | 0.957816 | 0.977582 |
13 | 0.724268 | 0.961421 | 0.97387 |
14 | 0.7547 | 0.958142 | 0.976738 |
Average | 0.7153 | 0.9605 | 0.9816 |
Tlow | c = 0.02, w = 11 Ac | c = 0.03, w = 13 Ac | c = 0.04, w = 15 Ac |
---|---|---|---|
0.010 | 0.9556 | 0.9533 | 0.9501 |
0.013 | 0.9599 | 0.9615 | 0.9565 |
0.016 | 0.9598 | 0.9611 | 0.9600 |
0.019 | 0.9590 | 0.9601 | 0.9601 |
0.022 | 0.9585 | 0.9587 | 0.9532 |
0.025 | 0.9576 | 0.9601 | 0.9599 |
0.028 | 0.9533 | 0.9600 | 0.9577 |
0.031 | 0.9600 | 0.9557 | 0.9585 |
0.034 | 0.9547 | 0.9546 | 0.9600 |
0.037 | 0.9564 | 0.9564 | 0.9601 |
Approach | Year | Sn | Spc | Ac | |||
---|---|---|---|---|---|---|---|
DRV | CDB | DRV | CDB | DRV | CDB | ||
Dash et al. [41] | 2020 | 0.7203 | 0.6454 | 0.9871 | 0.9799 | 0.9581 | 0.9609 |
Dash and Senapati [43] | 2020 | 0.7403 | -- | 0.9905 | -- | 0.9661 | -- |
AlSaeed et al. [51] | 2020 | 0.6312 | -- | 0.9817 | -- | 0.9353 | --- |
Memari et al. [50] | 2019 | 0.761 | 0.738 | 0.981 | 0.968 | 0.961 | 0.93 |
Subudhi et al. [49] | 2016 | 0.3451 | -- | 0.9716 | -- | 0.911 | -- |
Sreejini and Govindan [52] | 2015 | 0.7132 | -- | 0.9866 | -- | 0.9633 | -- |
Chakraborti et al. [53] | 2014 | 0.7205 | -- | 0.9579 | -- | 0.9370 | -- |
Cinsdikici and Aydin [57] | 2009 | -- | -- | -- | -- | 0.9407 | -- |
Mohammad et al. [54] | 2007 | -- | -- | 0.9513 | -- | -- | -- |
Rawi and Karajeh [55] | 2007 | -- | -- | 0.9422/ 0.9582 | -- | -- | -- |
Original matched filter | 0.60250 | 0.6156 | 0.95372 | 0.9426 | 0.93011 | 0.9296 | |
Proposed approach | 0.7043 | 0.7153 | 0.9890 | 0.9816 | 0.9613 | 0.9605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, S.; Verma, S.; Kavita; Bevinakoppa, S.; Wozniak, M.; Shafi, J.; Ijaz, M.F. Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction. Symmetry 2022, 14, 194. https://doi.org/10.3390/sym14020194
Dash S, Verma S, Kavita, Bevinakoppa S, Wozniak M, Shafi J, Ijaz MF. Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction. Symmetry. 2022; 14(2):194. https://doi.org/10.3390/sym14020194
Chicago/Turabian StyleDash, Sonali, Sahil Verma, Kavita, Savitri Bevinakoppa, Marcin Wozniak, Jana Shafi, and Muhammad Fazal Ijaz. 2022. "Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction" Symmetry 14, no. 2: 194. https://doi.org/10.3390/sym14020194
APA StyleDash, S., Verma, S., Kavita, Bevinakoppa, S., Wozniak, M., Shafi, J., & Ijaz, M. F. (2022). Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction. Symmetry, 14(2), 194. https://doi.org/10.3390/sym14020194