Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Collection
2.4. Kinetic and Kinematic Variables
2.5. Motor Control Variable
2.6. Statistical Analysis
3. Results
Descriptive and Main Effects
4. Discussion
4.1. Asymmetries and Symmetry Index
4.2. Symmetry, Velocity, and Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, T.M.; Costa, M.J.; Marinho, D.A. Proposal of a deterministic model to explain swimming performance. Int. J. Swim. Kinet. 2013, 2, 1–54. [Google Scholar]
- Seifert, L.; Chollet, D. Inter-limb coordination and constraints in swimming: A review. In Physical Activity and Children: New Research; Beaulieu, N.P., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 65–93. [Google Scholar]
- Schleihauf, R.E.; Higgins, J.R.; Hinrichs, R.; Luedtke, D.; Malglischo, C.; Maglischo, E. Propulsive techniques: Front crawl stroke, butterfly, backstroke, and breaststroke. In Swimming Science V; Human Kinetics Publishers: Champaign, IL, USA, 1988; pp. 53–59. [Google Scholar]
- Bartolomeu, R.F.; Costa, M.J.; Barbosa, T.M. Contribution of limbs’ actions to the four competitive swimming strokes: A nonlinear approach. J. Sports Sci. 2018, 36, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.E.; Batista, I.T.S.; Jesus, B. Repeatability and application of tethered swimming tests for recreational swimmers. Rev. Bras. Cineantropometria Desempenho Hum. 2018, 20, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Morouço, P.; Keskinen, K.L.; Vilas-Boas, J.P.; Fernandes, R.J. Relationship between tethered forces and the four swimming techniques performance. J. Appl. Biomech. 2011, 27, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morouço, P.G.; Marinho, D.A.; Izquierdo, M.; Neiva, H.; Marques, M.C. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming. BioMed Res. Int. 2015, 2015, 563206. [Google Scholar] [CrossRef]
- Santos, C.C.; Marinho, D.A.; Neiva, H.P.; Costa, M.J. Propulsive Forces in Human Competitive Swimming: A Systematic Review on Direct Assessment Methods: Propulsive Forces in Competitive Swimming. Sport Biomech. 2021. Available online: https://www.tandfonline.com/doi/abs/10.1080/14763141.2021.1953574 (accessed on 1 December 2021).
- Martens, J.; Figueiredo, P.; Daly, D. Electromyography in the Four Competitive Swimming Strokes: A Systematic Review. J. Electromyogr. Kinesiol. 2015, 25, 273–291. Available online: http://www.sciencedirect.com/science/article/pii/S105064111400248X (accessed on 15 December 2021). [CrossRef]
- Takagi, H.; Sanders, R.H. Measurement of propulsion by the hand during competitive swimming. In The Engineering of Sport; Ujihashi, S., Haake, S.J., Eds.; Blackwell Publishing: Malden, MA, USA, 2002; pp. 631–637. [Google Scholar]
- Sanders, R.H.; Thow, J.; Fairweather, M. Asymmetries in swimming: Where do they come from. J. Swim. Sci. 2011, 18, 1–11. [Google Scholar]
- Morouço, P.G.; Marinho, D.A.; Fernandes, R.J.; Marques, M.C. Quantification of upper limb kinetic asymmetries in front crawl swimming. Hum. Mov. Sci. 2015, 40, 185–192. [Google Scholar] [CrossRef]
- Pereira, G.S.; Schut, G.R.; Ruschel, C.; Roesler, H.; Pereira, S.M. Propulsive force symmetry generated during butterfly swimming. Rev. Bras. Cineantropometria Desempenho Hum. 2015, 17, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Seifert, L.; Chollet, D.; Allard, P. Arm coordination symmetry and breathing effect in front crawl. Hum. Mov. Sci. 2005, 24, 234–256. [Google Scholar] [CrossRef]
- Sanders, R.H. How do asymmetries affect swimming performance? J. Swim. Res. 2013, 21, 1–11. [Google Scholar]
- Sanders, R.; Fairweather, M.M.; Alcock, A.; McCabe, C. An Approach to Identifying the Effect of Technique Asymmetries on Body Alignment in Swimming Exemplified by a Case Study of a Breaststroke Swimmer. J. Sports Sci. Med. 2015, 14, 304. [Google Scholar]
- Neiva, H.; Marques, M.; Barbosa, T.C.; Izquierdo, M.; Marinho, D. Warm-Up and Performance in Competitive Swimming. Sports Med. 2014, 44, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Havriluk, R. Validation of a criterion measure for swimming technique. J. Swim. Res. 1988, 4, 11–16. [Google Scholar]
- Samson, M.; Bernard, A.; Monnet, T.; Lacouture, P.; David, L. Unsteady computational fluid dynamics in front crawl swimming. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Challis, R.E.; Kitney, R.I. Biomedical signal processing (in four parts). Part 1. Time-domain methods. Med Biol. Eng. Comput. 1990, 28, 509–524. [Google Scholar] [CrossRef]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Herzog, W.; Nigg, B.M.; Read, L.J.; Olsson, E. Asymmetries in ground reaction force patterns in normal human gait. Med. Sci. Sports Exerc. 1989, 21, 110–114. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Hillsdale, N.J., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Ryu, S.; Kim, J.; Kim, W.-S.; Park, S.-K. Immediate Effects of Real-Time Visual Bio-feedback Using Ground Reaction Forces on Gait Symmetry in Elderly Males. Int. J. Precis. Eng. Manuf. 2019, 21, 117–126. [Google Scholar] [CrossRef]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Marinho, D.A.; Silva, A.J.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. In-Water and On-Land Swimmers’ Symmetry and Force Production. Int. J. Environ. Res. Public Health 2019, 16, 5018. [Google Scholar] [CrossRef] [Green Version]
- Guignard, B.; Rouard, A.; Chollet, D.; Bonifazi, M.; Vedova, D.D.; Hart, J.; Seifert, L. Upper to Lower Limb Coordination Dynamics in Swimming Depending on Swimming Speed and Aquatic Environment Manipulations. Mot. Control. 2019, 23, 418–442. [Google Scholar] [CrossRef]
- Santos, C.C.; Rama, L.M.; Marinho, D.A.; Barbosa, T.M.; Costa, M.J. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. Int. J. Environ. Res. Public Health 2019, 16, 3784. [Google Scholar] [CrossRef] [Green Version]
- Kozinc, Ž.; Šarabon, N. Inter-limb asymmetries in volleyball players: Differences between testing approaches and association with performance. J. Sport Sci. Med. 2020, 19, 745–752. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.; Rosseti, M.; Carpes, F.P.; Bishop, C. Do asymmetry scores influence speed and power performance in elite female soccer players? Biol. Sport 2019, 36, 209–216. [Google Scholar] [CrossRef]
- Lobietti, R.; Coleman, S.; Pizzichillo, E.; Merni, F. Landing techniques in volleyball. J. Sports Sci. 2010, 28, 1469–1476. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Morin, J.-B.; Millet, G.P. Lower limb mechanical asymmetry during repeated treadmill sprints. Hum. Mov. Sci. 2017, 52, 203–214. [Google Scholar] [CrossRef]
- Furlong, L.-A.M.; Egginton, N.L. Kinetic Asymmetry during Running at Preferred and Nonpreferred Speeds. Med. Sci. Sports Exerc. 2018, 50, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Fohanno, V.; Nordez, A.; Smith, R.; Colloud, F. Asymmetry in elite rowers: Effect of ergometer design and stroke rate. Sports Biomech. 2015, 14, 310–322. [Google Scholar] [CrossRef]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and Horizontal Asymmetries are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players. J. Strength Cond. Res. 2018, 35, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do Bilateral Power Deficits Influence Direction-Specific Movement Patterns? Res. Sports Med. 2007, 15, 125–132. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A Vertical Jump Force Test for Assessing Bilateral Strength Asymmetry in Athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarczyk, K.; Błażkiewicz, M.; Wit, A.; Wychowański, M. Assessing the asymmetry of free gait in healthy young subjects. Acta. Bioeng. Biomech. 2017, 19, 101–106. [Google Scholar]
- Dos Santos, K.B.; Bento, P.C.B.; Pereira, G.; Payton, C.; Rodacki, A.L.F. Front crawl swimming performance and bi-lateral force asymmetry during land-based and tethered swimming tests. J. Sport Sci. Med. 2017, 16, 574–580. [Google Scholar]
- Cohen, R.C.Z.; Cleary, P.W.; Mason, B.; Pease, D.L. Studying the effects of asymmetry on freestyle swimming using smoothed particle hydrodynamics. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 271–284. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the Lower Limb. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Jaszczak, M. The influence of lower limb movement on upper limb movement symmetry while swimming the breaststroke. Biol. Sport 2011, 28, 207–211. [Google Scholar] [CrossRef]
- Formosa, D.P.; Mason, B.; Burkett, B. The force–time profile of elite front crawl swimmers. J. Sports Sci. 2011, 29, 811–819. [Google Scholar] [CrossRef]
- Werlang, R.G.; Pereira, S.M.; Ruschel, C.; Prado, A.P.M.; Schütz, G.R.; Roesler, H. Hand force symmetry during breaststroke swimming. Rev. Bras. Educ. Física Esporte 2017, 31, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, S.; Nagano, A.; Hay, D.C.; Fukashiro, S. The effect of bilateral asymmetry of muscle strength on the height of a squat jump: A computer simulation study. J. Sports Sci. 2011, 29, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Wilson, B.D. How does buoyancy influence front-crawl performance? Exploring the assumptions. Sports Technol. 2008, 1, 89–99. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.J.; Morais, J.E.; Morouço, P.; Moreira, M.; Garrido, N.; Marinho, D.A.; Silva, A.J. Characterization of speed fluctuation and drag force in young swimmers: A gender comparison. Hum. Mov. Sci. 2013, 32, 1214–1225. [Google Scholar] [CrossRef]
- Longman, J. Something Strange in Usain Bolt’s Stride. New York Times. 20 July 2017, p. 1. Available online: https://www.nytimes.com/2017/07/20/sports/olympics/usain-bolt-stride-speed.html (accessed on 1 December 2021).
- Radzak, K.N.; Putnam, A.M.; Tamura, K.; Hetzler, R.K.; Stickley, C.D. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture 2017, 51, 268–274. [Google Scholar] [CrossRef]
- Ueberschär, O.; Fleckenstein, D.; Warschun, F.; Kränzler, S.; Walter, N.; Hoppe, M.W. Measuring biomechanical loads and asymmetries in junior elite long-distance runners through triaxial inertial sensors. Sports Orthop. Traumatol. 2019, 35, 296–308. [Google Scholar] [CrossRef]
- Udofa, A.; Ryan, L.; Clark, K.; Weyand, P. Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method. Int. Soc. Biomech. Sport 2017, 35, 1072–1075. [Google Scholar]
- Formosa, D.P.; Sayers, M.G.; Burkett, B. Quantifying stroke coordination during the breathing action in front-crawl swimming using an instantaneous net drag force profile. J. Sports Sci. 2014, 32, 1–9. [Google Scholar] [CrossRef]
Trial Number (Randomly Assigned) | Stroke Variant | Sensor Placement | Condition Acronym |
---|---|---|---|
1 | Full Stroke | Right and left hands | FA |
2 | Full Stroke | Right and left feet | FK |
3 | Arm-pull only | Right and left hands | AO |
4 | Leg-kicking only | Right and left feet | KO |
Front Crawl | Backstroke | ||||||
---|---|---|---|---|---|---|---|
DL [N] M ± 1 SD (95CI) | NDL [N] M ± 1 SD (95CI) | SI [%] | DL [N] M ± 1 SD (95CI) | NDL [N] M ± 1 SD (95CI) | SI [%] | ||
FA | peak | 101.6 ± 38.3 (79.4−123.7) | 104.9 ± 45.3 (78.7−131.0) | 10.6 ± 5.9 (7.2−14.0) | 86.6 ± 29.5 (69.6−103.7) | 88.6 ± 31.1 (70.6−106.6) | 13.5 ± 8.4 (8.6−18.4) |
mean | 34.9 ± 14.2 (26.7−43.1) | 36.2 ± 18.0 (25.8−46.6) | 9.3± 5.1 a (6.3−12.2) | 29.3 ± 11.7 (22.5−36.1) | 31.0 ± 11.7 (24.2−37.7) | 12.9 ± 6.9 a (8.9−16.2) | |
FK | peak | 120.4 ± 74.6 (77.3−163.5) | 132.3 ± 63.1 (95.8−168.7) | 18.8 ± 12.1 (11.8−25.8) | 156.3 ± 73.1 (114.1−198.5) | 144.9 ± 68.1 (105.6−184.3) | 25.8 ± 15.0 (17.1−34.4) |
mean | 41.6 ± 29.8 (24.4−58.8) | 46.2 ± 31.0 (28.3−64.1) | 17.1 ± 12.4 a (9.98−24.3) | 57.4 ± 35.8 (36.7−78.0) | 53.0 ± 34.1 (33.3−72.8) | 20.2 ± 14.3 ab (11.9−28.4) | |
AO | peak | 107.1 ± 42.2 (82.8−131.5) | 102.5 ± 39.5 (79.7 −125.3) | 10.7 ± 6.2 (7.1−14.2) | 85.7 ± 32.5 (66.9−104.4) | 86.3 ± 33.7 (66.9−105.8) | 13.3 ± 14.3 (5.1−21.6) |
mean | 33.7 ± 13.3 (26.0−41.4) | 34.2 ± 16.7 (24.6−43.8) | 11.2 ± 7.0 a (7.2−15.3) | 28.9 ± 13.0 (21.4−36.4) | 29.4 ± 15.0 (20.7−38.1) | 10.4 ± 7.9 a (5.8−14.9) | |
KO | peak | 120.4 ± 52.7 (89.9−150.8) | 123.8 ± 52.3 (93.6 −154.0) | 14.6 ± 14.8 (6.1−23.2) | 147.3 ± 65.2 (109.7−184.9) | 136.5 ± 57.7 (103.2−169.9) | 28.1 ± 25.2 (13.6−42.6) |
mean | 40.9 ± 27.8 (24.9−56.9) | 39.2 ± 25.3 (24.6−53.8) | 15.7 ± 13.6 a (7.9−23.6) | 52.6 ± 30.7 (34.9−70.4) | 45.7 ± 28.9 (29.1−62.4) | 35.0 ± 34.1 b (15.3−54.7) |
Breaststroke | Butterfly Stroke | ||||||
---|---|---|---|---|---|---|---|
DL [N] M ± 1 SD (95CI) | NDL [N] M ± 1 SD (95CI) | SI [%] | DL [N] M ± 1 SD (95CI) | NDL [N] M ± 1 SD (95CI) | SI [%] | ||
FA | peak | 121.8 ± 35.3 (101.4−142.1) | 118.9 ± 35.3 (98.5−139.3) | 14.06 ± 10.8 (7.8−20.3) | 107.3 ± 38.2 (85.2−129.3) | 97.1 ± 36.1 (76.2−117.9) | 17.3 ± 10.2 (11.4−23.2) |
mean | 33.3 ± 9.6 (27.7−38.8) | 31.4 ± 11.2 (24.9−37.9) | 16.1 ± 11.3 a (9.7−22.6) | 34.8 ± 11.2 (28.3−41.3) | 32.5 ± 13.2 (24.8−40.1) | 14.8 ± 7.4 a (10.5−19.0) | |
FK | peak | 198.1 ± 50.9 (168.7−227.5) | 192.0 ± 46.4 (165.2−218.8) | 7.36 ± 7.5 (3.0-11.7) | 71.2 ± 26.6 (55.8−86.5) | 76.0 ± 28.3 (59.67−92.3) | 17.6 ± 17.9 (7.2−27.9) |
mean | 30.2 ± 8.0 (25.6−34.8) | 27.87 ± 7.76 (23.4−32.3) | 10.2 ± 5.8 a (6.9−13.6) | 12.1 ± 5.9 (8.6−15.5) | 12.2 ± 5.4 (9.08−15.3) | 25.2 ± 24.3 ab (11.2−39.27) | |
AO | peak | 111.9 ± 36.5 (90.8−133.0) | 107.1 ± 40.5 (83.7−130.7) | 6.7 ± 5.9 (3.3−10.1) | 101.7 ± 37.3 (80.1−123.3) | 90.0 ± 37.1 (68.6−111.4) | 19.5 ± 12.3 (12.4−26.6) |
mean | 32.2 ± 10.1 (26.3−38.0) | 32.2 ± 11.1 (25.7−38.6) | 11.0 ± 8.6 a (6.0−15.9) | 34.0 ± 10.0 (28.2−39.7) | 31.6 ± 11.8 (24.8−38.4) | 14.3 ± 7.0 a (10.3−18.3) | |
KO | peak | 201.7 ± 51.12 (172.1−231.2) | 184.5 ± 49.3 (156.1−213.0) | 9.4 ± 9.09 (4.1−14.6) | 104.4 ± 46.3 (77.7−131.1) | 96.3 ± 37.5 (74.5−117.9) | 22.1 ± 18.5 (11.4−32.8) |
mean | 32.0 ± 7.7 (27.5−36.4) | 28.4 ± 7.2 (24.2−32.6) | 14.9 ± 9.1 a (9.6−20.1) | 21.8 ± 14.5 (13.4−30.2) | 17.3 ± 9.0 (12.0−22.5) | 35.7 ± 24.6 b (21.5−49.9) |
Symmetry Index of Fpk (SI_Fpk) | Symmetry Index of Fm (SI_Fm) | |||||||
---|---|---|---|---|---|---|---|---|
df | F-Ratio | p-Value | df | F-Ratio | p-Value | |||
Stroke | 2.1, 27.5 | 6.802 | 0.003 | 0.343 | 3, 39 | 4.93 | 0.005 | 0.275 |
Condition | 1.9, 25.3 | 2.955 | 0.071 | 0.185 | 1.8, 23.2 | 7.777 | 0.003 | 0.374 |
Stroke × condition | 4.2, 54.4 | 1.908 | 0.119 | 0.128 | 3.7, 48.5 | 2.569 | 0.053 | 0.165 |
SI_Fpk (%) | SI_Fm (%) | Vpk (m·s−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
df | r | p | df | r | p | df | r | p | ||
No Control | SI_Fpk (%) | ----- | ----- | ----- | ||||||
SI_Fm (%) | 224 | 0.677 | <0.001 † | ----- | ----- | ----- | ||||
Vpk (m·s−1) | 156 | −0.137 | 0.088 | 156 | −0.062 | 0.438 | ----- | ----- | ----- | |
Vm (m·s−1) | 156 | −0.030 | 0.709 | 156 | −0.075 | 0.354 | 156 | 0.551 | 0.000 † | |
Controlling for stroke | SI_Fpk (%) | ----- | ----- | ----- | ||||||
SI_Fm (%) | 221 | 0.678 | <0.001 † | ----- | ----- | ----- | ||||
Vpk (m·s−1) | 153 | −0.129 | 0.132 | 153 | −0.109 | 0.175 | ----- | ----- | ----- | |
Vm (m·s−1) | 153 | −0.029 | 0.723 | 153 | −0.065 | 0.424 | 153 | 0.586 | 0.000 † | |
Controlling for condition | SI_Fpk (%) | ----- | ----- | ----- | ||||||
SI_Fm (%) | 221 | 0.678 | <0.001 † | ----- | ----- | ----- | ||||
Vpk (m·s−1) | 153 | −0.119 | 0.141 | 153 | 0.048 | 0.556 | ----- | ----- | ----- | |
Vm (m·s−1) | 153 | 0.008 | 0.921 | 153 | 0.041 | 0.612 | 153 | 0.385 | 0.000 ‡ | |
Controlling for stroke × condition | SI_Fpk (%) | ----- | ----- | ----- | ||||||
SI_Fm (%) | 220 | 0.680 | <0.001 † | ----- | ----- | ----- | ||||
Vpk (m·s−1) | 152 | −0.131 | 0.106 | 152 | −0.002 | 0.979 | ----- | ----- | ----- | |
Vm (m·s−1) | 152 | 0.010 | 0.904 | 152 | 0.056 | 0.494 | 152 | 0.426 | 0.000 ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomeu, R.F.; Rodrigues, P.; Santos, C.C.; Costa, M.J.; Barbosa, T.M. Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes? Symmetry 2022, 14, 12. https://doi.org/10.3390/sym14010012
Bartolomeu RF, Rodrigues P, Santos CC, Costa MJ, Barbosa TM. Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes? Symmetry. 2022; 14(1):12. https://doi.org/10.3390/sym14010012
Chicago/Turabian StyleBartolomeu, Raul Filipe, Pedro Rodrigues, Catarina Costa Santos, Mário Jorge Costa, and Tiago Manuel Barbosa. 2022. "Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes?" Symmetry 14, no. 1: 12. https://doi.org/10.3390/sym14010012
APA StyleBartolomeu, R. F., Rodrigues, P., Santos, C. C., Costa, M. J., & Barbosa, T. M. (2022). Is There Any Effect of Symmetry on Velocity of the Four Swimming Strokes? Symmetry, 14(1), 12. https://doi.org/10.3390/sym14010012