An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers
Abstract
:1. Introduction and Definitions
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function Theory of Complex Analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Variables Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, QC, Canada, 1989; pp. 329–354. [Google Scholar]
- Raghavendar, K.; Swaminathan, A. Close-to-convexity properties of basis hypergeometric functions using their Taylor coefficients. J. Math. Appl. 2012, 35, 53–67. [Google Scholar]
- Janteng, A.; Abdulhalirn, S.; Darus, M. Coefficient inequality for a function whose derivative has positive real part. J. Inequal. Pure Appl. Math. 2006, 50, 1–5. [Google Scholar]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Ahmad, Q.Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Özgür, N.Y.; Sokół, J. On starlike functions connected with k-Fibonacci numbers. Bull. Malays. Math. Sci. Soc. 2015, 38, 249–258. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Internat. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Güney, H.O.; Ilhan, S.; Sokół, J. An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers. Bol. Soc. Mat. Mex. 2019, 25, 117–129. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vanderhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103–113. [Google Scholar]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers. Symmetry 2020, 12, 1043. https://doi.org/10.3390/sym12061043
Shafiq M, Srivastava HM, Khan N, Ahmad QZ, Darus M, Kiran S. An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers. Symmetry. 2020; 12(6):1043. https://doi.org/10.3390/sym12061043
Chicago/Turabian StyleShafiq, Muhammad, Hari M. Srivastava, Nazar Khan, Qazi Zahoor Ahmad, Maslina Darus, and Samiha Kiran. 2020. "An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers" Symmetry 12, no. 6: 1043. https://doi.org/10.3390/sym12061043
APA StyleShafiq, M., Srivastava, H. M., Khan, N., Ahmad, Q. Z., Darus, M., & Kiran, S. (2020). An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers. Symmetry, 12(6), 1043. https://doi.org/10.3390/sym12061043