1. Introduction
The standard textbook formulation of Maxwell electrodynamics, in vacua with sources, entails linear first order partial differential equations for electric and magnetic field strengths and . Conventionally, the equations for these field strengths are first cast in terms of the scalar and vector potentials, and . The resulting second order equations for the potentials are found to be noninvertible because of the gauge ambiguity of the potentials—addition of gradients of arbitrary (gauge) functions to any solution generates an equivalence class of solutions for the potentials, related by local gauge transformations. All the gauge potentials in a gauge-equivalent class give the same electromagnetic field strengths. This gauge ambiguity has often led people to consider gauge potentials as unphysical, in comparison to the ‘physical’ (gauge-invariant) field strengths. The standard procedure for getting to the solutions is to ‘gauge fix’ the potentials, i.e., impose subsidiary conditions on them so that the ambiguity may be resolved. There is a nondenumerably infinite set of such subsidiary ‘gauge conditions’, each one as ad hoc as the other, and none with any intrinsic physical relevance. This entire approach, tenuous as it is, avoids facing up to the central issue: Why are the equations for the potentials noninvertible in the first place? Is Nature so unkind as to provide us with unique gauge-invariant equations for quantities which themselves are infinitely ambiguous? The answer is an emphatic No!
In his succinctly beautiful history of the Maxwell equations of electrodynamics, Nobel Laureate theoretical physicist C. N. Yang [
1] recalls how Faraday first identified the concept of the ‘electrotonic state’ as the origin of the induced electromotive force, purely as a result of his extraordinary experimental research and physical intuition. The idea of the vector potential was introduced by Thomson (Lord Kelvin) in 1851, ostensibly as a solution of
. Five years later, in a brilliant identification of Thomson’s vector potential with Faraday’s electrotonic state, Maxwell wrote down, for the first time ever, the equation
, which led him to his Law VI:
The electromotive force on any element of a conductor is measured by the instantaneous rate of change of the electrotonic intensity on that element, whether in magnitude or direction. Yang further writes: “The identification of Faraday’s elusive idea of the electrotonic state (or electrotonic intensity, or electrotonic function) with Thomson’s vector potential is, in my opinion, the first great conceptual breakthrough in Maxwell’s scientific research…”, also, “Indeed, the concept of the vector potential remained central in Maxwell’s thinking throughout his life.”
From our standpoint, it is inconceivable that such an outstanding experimentalist as Faraday would focus on a concept which we call the vector potential, if indeed it is ‘unphysical’, as often perceived nowadays among a certain group of physicists. Likewise, Maxwell’s preoccupation with the same concept would have been a continuation of an illusory pursuit if the vector potential is indeed unphysical. Interestingly, Maxwell himself was apparently quite aware of the gauge ambiguity of the Maxwell equations for
and
as mentioned above, but according to Yang [
1], on the issue of gauge-fixing Maxwell was silent: ‘He did not touch on that question, but left it completely indeterminate.’ This is where we speculate on the reason: Maxwell was perhaps aware that his equations themselves provided, in today’s parlance, a
unique projection operator which projects onto the physical part of the vector potential. Clearly,
and
depend
solely on this physical part of the vector potential and are quite independent of the unphysical
pure gauge part. The manner in which the projection operator isolates the gauge-invariant physical part of the vector potential, can, of course be reproduced by a gauge choice as well—however, such a choice is
by no means essential. Gauge choices (or gauge-fixings) merely constrain the unphysical part of the gauge potential, leaving the gauge-invariant physical part quite untouched, as they must.
To reiterate, the reason that the equations for the potentials are noninvertible in the first place is because their intrinsic analytic structure involves a projection operator which has a nontrivial kernel of unphysical ‘pure gauge’ vector fields! This simple observation renders any ‘gauge fixing’ superfluous, since it is now obvious that the equations are to be interpreted in terms of projected physical, gauge-invariant potentials not belonging to the kernel of the projection operator, hence obeying very simple wave equations that are immediately uniquely invertible without the need for any imposition of additional ‘gauge conditions’. We find it surprising that this simple fact has not been clarified in any of the number of currently popular textbooks on classical electrodynamics. From a physical standpoint, this approach, in contrast to the standard one based on the field strengths, immediately divulges the essence of electromagnetism as the theory of electromagnetic waves under various circumstances. All other field configurations (in vacuo) can be easily explained once the propagation and generation of electromagnetic waves is understood in terms of the physical potentials.
There is another lacuna in extant textbook treatments of Maxwell electrodynamics—the absence of a fully relativistically covariant formulation of the subject ab initio. Special relativity is intrinsically embedded in Maxwell electrodynamics with charge and current sources in empty space, as was discovered by Einstein in 1905 [
2]. If, as per standard practice, the fundamental equations are written in terms of the electric and magnetic fields, the relativistic invariance of these equations is far from obvious. This emerges only after some effort is given to relate the electric and magnetic fields in different inertial reference frames connected by Lorentz boosts. In contrast, if the equations are cast in terms of the
physical electromagnetic scalar and vector potentials introduced by Maxwell, then these potentials and the equations they obey can be easily combined to yield a structure that is
manifestly invariant under Lorentz boosts as well as spatial rotations, i.e., the full Lorentz transformations. Given that it is easier always to compute four, rather than six, field components for given source charge and current densities, it stands to reason to begin any formulation of electrodynamics from the (physical) potentials, rather than the field strengths.
Despite its antiquity, a formulation of classical electrodynamics that, from the outset, is fully relativistically covariant, is somehow not preferred in the very large number of excellent textbooks currently popular, with perhaps the sole exception of [
3]. Even so, the issue of the gauge ambiguity and the full use of electromagnetic potentials rather than fields has not been dealt with adequately, even in this classic textbook. Thus, while relativistically covariant Lienard–Wiechert potentials describing the solution of Maxwell’s equations due to an arbitrarily moving relativistic point charge have been obtained, the corresponding field strengths and the radiative energy–momentum tensor have not been given such a manifestly covariant treatment. The more widely used textbook [
4] also fills this gap only in part. Since special relativity is so intrinsic to Maxwell vacuum electrodynamics with sources, it is only befitting that the entire formalism exhibit this symmetry explicitly. The subtle interplay with gauge invariance is also a hallmark of this theory, which forms the basis of our current understanding of the fundamental interactions of physics.
We end this introduction with the disclaimer—this paper is exclusively on Maxwell electrodynamics. As such, it does not discuss theoretically interesting generalizations involving magnetic charges and large gauge transformations. Interesting as these ideas are, there is no observational evidence yet that they are applicable to the physical universe, so these ideas remain within the domain of speculation. Of course, the moment a magnetic monopole is observed as an asymptotic state, our paper stands to be immediately falsified. This, however, is not a lacuna of the paper, rather it is its strength that it ‘sticks its neck out’ so to speak, in contrast with the plethora of theoretical papers whose veracity or relevance vis-a-vis the physical universe remains forever in doubt. Regarding the generalization of electrodynamics with both electric and magnetic charges, the construction of a local field theory is still not without issues. Whether this is a hint from Nature about the relevance of such ideas, still remains unclear. In our favor, the entire description being in terms of a single 4-vector potential has a virtue: The electric and magnetic aspects are actually unified in this description. If magnetic monopoles were present, this unification would actually be absent, in favor of a duality symmetry—the electric–magnetic duality. It is not unlikely that even though this duality symmetry is dear to some theoretical physicists, Nature does not make use of it, if the evidence so far is to be taken into account. In regard to large gauge transformations, recent work on asymptotic symmetries of flat spacetime has led to interesting issues regarding electrodynamic gauge transformations, which may serve as research topics for the future.
This paper is structured as follows: In
Section 2 we first exhibit gauge-invariant physical potentials for stationary electromagnetism (electrostatics and magnetostatics) and show how they satisfy
identical equations underlining their inherent unity. We then generalize this to full electrodynamics with a neat substitution, and show that the standard Maxwell equations for field strengths
emerge from these. In the next section, we demonstrate the invariance of the Maxwell equations for the physical potentials under Lorentz transformations, characterized by a
matrix
which includes both spatial rotations and Lorentz boosts. We argue that this symmetry of Maxwell electrodynamics is also the isometry of the Minkowski metric of flat spacetime. Next, we complete the circle by showing how the equations for the physical potentials can be derived covariantly from the covariant Maxwell equations for the field strengths and exhibit the form of the projection operator, which enables this projection onto physical potentials. Then, in
Section 4, we show how the physical potentials can be coupled gauge-invariantly to charged scalar fields through the technique of
iterative Nöther coupling, leading to the classical Abelian Higgs model. We also provide a sketch to show that the Aharonov–Bohm phase is a functional of the physical potentials alone, completely independent of the unphysical pure gauge part. We conclude in
Section 5.
5. Conclusions
We saw in the last section that physical effects stemming from nontrivial configuration spaces of test charges, like the Aharonov–Bohm effect, actually reinforce our contention that the gauge-invariant projection of the 4-vector potential plays the key role at the expense of the pure gauge piece. This approach completely demystifies the topic of gauge ambiguity, and champions special relativity through a totally Lorentz-covariant approach, free of gauge ambiguities.
Recently, it has been shown [
8] that any
non-Abelian gauge theory (with matter interactions) is classically equivalent to a set of Abelian gauge fields, whose self-interaction and interaction with matter are generated by a process of iterative Nöther coupling, without invoking the minimal coupling prescription. Since Abelian gauge fields are completely described by their physical projection, as elaborated in this paper, a mathematically simpler description of non-Abelian gauge fields, avoiding any Faddeev–Popov gauge fixing, can be envisaged using our results. A preliminary attempt in this direction has been made in [
6]. We hope to report more complete results elsewhere.
A related issue is that our approach can avoid the conundrum discussed many years ago by Gupta and Bleuler [
10], associated with canonical quantization of the free Maxwell field, when the gauge potential is gauge fixed by means of a Lorentz-invariant gauge condition like the Lorenz–Landau gauge. Due to the indefinite spacetime metric, states in the Fock space of the theory are seen to possess negative norm. Gupta and Bleuler proposed that these unphysical Fock space states must be eliminated by subsidiary conditions imposed on the Fock space. In our approach, the projected 4-potential is actually a
spacelike 4-vector with vanishing projection along the two linearly independent null directions of Minkowski 4-spacetime. The physical subspace of polarizations is
, so problems associated with the indefinite metric of Minkowski spacetime ought not to be of consequence. We hope to report on this in detail elsewhere.
We have also been recently informed that similar projection operators have been considered in some contemporary works on quantum field theory, e.g., [
11,
12,
13,
14]. Even earlier, it was apparently J. L. Synge who first proposed projection operators to project out the physical degrees of freedom [
15] of the electromagnetic field interacting with test charges. However, the formulation given here is that of the authors of this paper. Earlier, it has also been extensively discussed in class lectures on Maxwell electrodynamics given by one of us (PM) since 2005.