Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs
Abstract
:1. Introduction
2. System Model and Problem Formulation
3. Optimal Solution
3.1. Update of with Given
3.2. Update of with Given
Algorithm 1: Joint power allocation of artificial noise and information signals for solving Equation (9). |
3.3. Computational Complexity Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Renna, F.; Laurenti, N.; Poor, H.V. Physical-Layer Secrecy for OFDM Transmissions Over Fading Channels. IEEE Trans. Inf. Forensic Secur. 2012, 7, 1354–1367. [Google Scholar] [CrossRef]
- Tsai, S.H.; Poor, H.V. Power Allocation for Artificial-Noise Secure MIMO Precoding Systems. IEEE Trans. Signal Process. 2014, 62, 3479–3493. [Google Scholar] [CrossRef]
- Jameel, F.; Wyne, S.; Kaddoum, G.; Duong, T.Q. A Comprehensive Survey on Cooperative Relaying and Jamming Strategies for Physical Layer Security. IEEE Commun. Surv. Tutor. 2018. [Google Scholar] [CrossRef]
- Jang, U.; Lim, H.; Kim, H. Privacy-Enhancing Security Protocol in LTE Initial Attack. Symmetry 2014, 6, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, L.; Alexandropoulos, G.C.; Pesavento, M. Securing Relay Networks with Artificial Noise: An Error Performance-Based Approach. Entropy 2017, 19, 384. [Google Scholar] [CrossRef]
- Alvarez, R.; Andrade, A.; Zamora, A. Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption. Symmetry 2018, 10, 705. [Google Scholar] [CrossRef]
- Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer of Text Files between Embedded IoT Devices. Symmetry 2019, 11, 293. [Google Scholar] [CrossRef]
- Massey, J.L. An Introduction to Contemporary Cryptology. IEEE Proc. 1988, 76, 533–549. [Google Scholar] [CrossRef]
- Wallace, J.W.; Sharma, R.K. Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis. IEEE Trans. Inf. Forensic Secur. 2010, 5, 381–392. [Google Scholar] [CrossRef]
- Fan, C.I.; Tseng, Y.F. Anonymous Multi-Receiver Identity-Based Authenticated Encryption with CCA Security. Symmetry 2015, 7, 1856–1881. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Al Solami, E.; Wang, X.Y.; Doja, M.N.; Beg, M.M.S.; Alzaidi, A.A. Cryptanalysis of an Image Encryption Algorithm Based on Combined Chaos for a BAN System, and Improved Scheme Using SHA-512 and Hyperchaos. Symmetry 2018, 10, 266. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Leung-yan-cheong, S.K.; Hellman, M.E. The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 1978, 24, 451–456. [Google Scholar] [CrossRef]
- Csiszar, I.; Korner, J. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar] [CrossRef]
- Li, Z.; Yates, R.; Trappe, W. Secrecy Capacity of Independent Parallel Channels. In Securing Wireless Communications at the Physical Layer; Springer: Boston, MA, USA, 2010; pp. 1–18. [Google Scholar]
- Khisti, A.; Wornell, G.W. Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel. IEEE Trans. Inf. Theory 2010, 56, 3088–3104. [Google Scholar] [CrossRef] [Green Version]
- Jorswieck, E.A.; Wolf, A. Resource allocation for the wire-tap multi-carrier broadcast channel. In Proceedings of the 2008 International Conference on Telecommunications, St. Petersburg, Russia, 16–19 June 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Goel, S.; Negi, R. Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 2008, 7, 2180–2189. [Google Scholar] [CrossRef]
- Qin, H.H.; Chen, X.; Zhong, X.F.; He, F.; Zhao, M.; Wang, J. Joint Power Allocation and Artificial Noise Design for Multiuser Wiretap OFDM Channels. In Proceedings of the 2013 IEEE International Conference on Communications, Budapest, Hungary, 9–13 June 2013. [Google Scholar] [CrossRef]
- Karachontzitis, S.; Timotheou, S.; Krikidis, I.; Berberidis, K. Security-Aware Max-Min Resource Allocation in Multiuser OFDMA Downlink. IEEE Trans. Inf. Forensic Secur. 2015, 10, 529–542. [Google Scholar] [CrossRef]
- Chen, X.; Qin, H.H.; Xiao, L.M. Joint Resource Allocation and Artificial Noise Design for Multiuser Wiretap OFDM Channels. J. Commun. Netw. 2017, 19, 451–460. [Google Scholar] [CrossRef]
- Zhou, X.Y.; McKay, M.R. Secure Transmission with Artificial Noise over Fading Channels: Achievable Rate and Optimal Power Allocation. IEEE Trans. Veh. Technol. 2010, 59, 3831–3842. [Google Scholar] [CrossRef]
- Li, Q.; Ma, W.K. Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming. IEEE Trans. Signal Process. 2011, 59, 3799–3812. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.C.; Chang, T.H.; Ma, W.K.; Chi, C.Y. QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach. IEEE Trans. Signal Process. 2011, 59, 1202–1216. [Google Scholar] [CrossRef]
- Qin, H.H.; Sun, Y.; Chang, T.H.; Chen, X.; Chi, C.Y.; Zhao, M.; Wang, J. Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs. IEEE Trans. Wirel. Commun. 2013, 12, 2717–2729. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.H.; Gao, Z.Z.; Liu, F.; Liao, X.W. A General Time-domain Artificial Noise Design for OFDM AF Relay Systems. In Proceedings of the 2015 IEEE/CIC International Conference on Communications, Shenzhen, China, 2–4 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Xing, H.; Liu, L.; Zhang, R. Secrecy Wireless Information and Power Transfer in Fading Wiretap Channel. IEEE Trans. Veh. Technol. 2016, 65, 180–190. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Zhang, R. Artificial Noise Aided Secrecy Information and Power Transfer in OFDMA Systems. IEEE Trans. Wirel. Commun. 2016, 15, 3085–3096. [Google Scholar] [CrossRef] [Green Version]
- Motahari, A.S.; Oveis-Gharan, S.; Maddah-Ali, M.A.; Khandani, A.K. Real Interference Alignment: Exploiting the Potential of Single Antenna Systems. IEEE Trans. Inf. Theory 2014, 60, 4799–4810. [Google Scholar] [CrossRef]
- Xiao, C.S.; Zheng, Y.R.; Ding, Z. Globally Optimal Linear Precoders for Finite Alphabet Signals Over Complex Vector Gaussian Channels. IEEE Trans. Signal Process. 2011, 59, 3301–3314. [Google Scholar] [CrossRef]
- Atallah, M.; Kaddoum, G. Secrecy Analysis in Wireless Network with Passive Eavesdroppers by Using Partial Cooperation. IEEE Trans. Veh. Technol. 2019. [Google Scholar] [CrossRef]
- Vuppala, S.; Tolossa, Y.J.; Kaddoum, G.; Abreu, G. On the Physical Layer Security Analysis of Hybrid Millimeter Wave Networks. IEEE Trans. Commun. 2018, 66, 1139–1152. [Google Scholar] [CrossRef]
- Fan, L.H.; Tang, B.; Huang, Z.R.; Jiang, Q.X. Designing Constant-Envelope Transmissions for Secret Communications in MISO Wiretap Channels. IEEE Access 2019, 7, 17791–17797. [Google Scholar] [CrossRef]
- Li, L.X.; Chen, Z.; Petropulu, A.P.; Fang, J. Linear Precoder Design for an MIMO Gaussian Wiretap Channel with Full-Duplex Source and Destination Nodes. IEEE Trans. Inf. Forensic Secur. 2018, 13, 421–436. [Google Scholar] [CrossRef]
- Al-Talabani, A.; Deng, Y.S.; Nallanathan, A.; Nguyen, H.X. Enhancing Secrecy Rate in Cognitive Radio Networks via Stackelberg Game. IEEE Trans. Commun. 2016, 64, 4764–4775. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Li, Q. Improving physical-layer security for primary users in cognitive radio networks. IET Commun. 2017, 11, 2303–2310. [Google Scholar] [CrossRef]
- Moon, J.; Lee, H.; Song, C.; Lee, S.; Lee, I. Proactive Eavesdropping With Full-Duplex Relay and Cooperative Jamming. IEEE Trans. Wirel. Commun. 2018, 17, 6707–6719. [Google Scholar] [CrossRef]
- Koorapaty, H.; Hassan, A.A.; Chennakeshu, S. Secure information transmission for mobile radio. IEEE Commun. Lett. 2000, 4, 52–55. [Google Scholar] [CrossRef]
- Seong, K.; Mohseni, M.; Cioffi, J.M. Optimal Resource Allocation for OFDMA Downlink Systems. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 1394–1398. [Google Scholar] [CrossRef]
- Yu, W.; Lui, R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. 2006, 54, 1310–1322. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Bertsekas, D. Nonlinear Programming; Athena Scientific: Belmont, MA, USA, 1999. [Google Scholar]
- Guo, D.N.; Shamai, S.; Verdu, S. Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theory 2005, 51, 1261–1282. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming. 2017. Available online: https://cvxr.com/cvx (accessed on 27 May 2019).
- Guo, D.N.; Wu, Y.H.; Shamai, S.; Verdu, S. Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error. IEEE Trans. Inf. Theory 2011, 57, 2371–2385. [Google Scholar] [CrossRef] [Green Version]
- Marks, B.R.; Wright, G.P. A general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 1978, 26, 681–683. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.Y.; Zhang, S.Z. Semidefinite Relaxation of Quadratic Optimization Problems. IEEE Signal Process. Mag. 2010, 27, 20–34. [Google Scholar] [CrossRef]
- Lozano, A.; Tulino, A.M.; Verdu, S. Optimum power allocation for parallel Gaussian channels with arbitrary input distributions. IEEE Trans. Inf. Theory 2006, 52, 3033–3051. [Google Scholar] [CrossRef]
- Wu, Y.; Ng, D.W.K.; Wen, C.K.; Schober, R.; Lozano, A. Low-Complexity MIMO Precoding for Finite-Alphabet Signals. IEEE Trans. Wirel. Commun. 2017, 16, 4571–4584. [Google Scholar] [CrossRef]
- Zeng, W.L.; Xiao, C.S.; Wang, M.X.; Lu, J.H. Linear Precoding for Finite-Alphabet Inputs Over MIMO Fading Channels With Statistical CSI. IEEE Trans. Signal Process. 2012, 60, 3134–3148. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Tang, B.; Jiang, Q.; Liu, F.; Yin, C. Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs. Symmetry 2019, 11, 855. https://doi.org/10.3390/sym11070855
Fan L, Tang B, Jiang Q, Liu F, Yin C. Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs. Symmetry. 2019; 11(7):855. https://doi.org/10.3390/sym11070855
Chicago/Turabian StyleFan, Linhui, Bo Tang, Qiuxi Jiang, Fangzheng Liu, and Chengyou Yin. 2019. "Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs" Symmetry 11, no. 7: 855. https://doi.org/10.3390/sym11070855
APA StyleFan, L., Tang, B., Jiang, Q., Liu, F., & Yin, C. (2019). Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs. Symmetry, 11(7), 855. https://doi.org/10.3390/sym11070855