N-Soliton Solutions for the NLS-Like Equation and Perturbation Theory Based on the Riemann–Hilbert Problem
Abstract
:1. Introduction
2. The Riemann–Hilbert Problem
3. The N-Soliton Solutions and Their Danamics
3.1. Single-Soliton Solutions
3.2. Two-Soliton Solutions
4. Evolution of the R–H Data in the Perturbed NLS-Like Equation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering Transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 2015, 53, 249–315. [Google Scholar] [CrossRef]
- Ji, J.L.; Zhu, Z.N. Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 2017, 453, 973–984. [Google Scholar] [CrossRef]
- Maeda, M.; Sasaki, H.; Segawa, E.; Suzuki, A.; Suzuki, K. Scattering and inverse scattering for nonlinear quantum walks. Discrete Contin. Dyn. Syst. 2018, 38, 18. [Google Scholar] [CrossRef]
- Shchesnovich, V.S. The soliton perturbation theory based on the Riemann-Hilbert spectral problem. Chaos Solitons Fractals 1995, 5, 2121–2133. [Google Scholar] [CrossRef]
- Kaup, D.J.; Yang, J.K. The inverse scattering transform and squared eigenfunctions for a degenerate 3 × 3 operator. Inverse Probl. 2009, 25, 105010–105021. [Google Scholar] [CrossRef]
- Guo, B.L.; Ling, L.M. Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 2012, 53, 73506. [Google Scholar] [CrossRef]
- Wang, D.S.; Ma, Y.Q.; Li, X.G. Prolongation structures and matter-wave solitons in F = 1 spinor Bose-Einstein condensate with time-dependent atomic scattering lengths in an expulsive harmonic potential. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3556–3569. [Google Scholar] [CrossRef]
- Huang, L.; Lenells, J. Nonlinear Fourier transforms for the sine-Gordon equation in the quarter plane. J. Differ. Equ. 2017, 264, 3445–3499. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct. Anal. Appl. 1979, 13, 166–174. [Google Scholar] [CrossRef]
- Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Springer Science and Business Media: New York, NY, USA, 1984. [Google Scholar]
- Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems. Bull. Aust. Math. Soc. 1991, 26, 295–368. [Google Scholar] [CrossRef]
- Shchesnovich, V.S.; Yang, J.K. General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations. J. Math. Phys. 2003, 44, 4604–4639. [Google Scholar] [CrossRef]
- Webb, J.R.L.; Infante, G. Positive solutions of nonlocal boundary value problems: A unified approach. J. Lond. Math. Soc. 2006, 74, 673–693. [Google Scholar] [CrossRef]
- Geng, X.G.; Wu, J.P. Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation. Wave Motion 2016, 60, 62–72. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 2018, 132, 45–54. [Google Scholar] [CrossRef]
- Xu, X.X.; Sun, Y.P. An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 2017, 10, 3328–3343. [Google Scholar] [CrossRef]
- Chen, J.C.; Ma, Z.Y.; Hu, Y.H. Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation. J. Math. Anal. Appl. 2018, 460, 987–1003. [Google Scholar] [CrossRef]
- Zhang, N.; Xia, T.C.; Jin, Q.Y. N-Fold Darboux transformation of the discrete Ragnisco-Tu system. Adv. Differ. Equ. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Zhu, S.D.; Song, J.F. Residual symmetries, nth Bäcklund transformation and interaction solutions for (2+1)-dimensional generalized Broer-Kaup equations. Appl. Math. Lett. 2018, 83, 33–39. [Google Scholar] [CrossRef]
- Chen, H.H. General derivation of Bäcklund transformations from inverse scattering problems. Phys. Rev. Lett. 1974, 33, 925–928. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput. 2007, 190, 633–640. [Google Scholar] [CrossRef]
- Hu, X.B.; Wu, Y.T. Application of the Hirota bilinear formalism to a new integrable differential-difference equation. Phys. Lett. A 1998, 246, 523–529. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 2018, 264, 2633–2659. [Google Scholar] [CrossRef]
- Fan, E.G.; Zhang, H.Q. The homogeneous balance method for solving nonlinear soliton equations. Acta Phys. Sin. 1998, 47, 353–362. [Google Scholar]
- Wang, M.L.; Zhou, Y.B.; Li, Z.B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Ma, W.X.; Wu, H.Y.; He, J.S. Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 2007, 364, 29–31. [Google Scholar] [CrossRef]
- Gao, L.; Ma, W.X.; Xu, W. Frobenius integrable decompositions for ninth-order partial differential equations of specific polynomial type. Appl. Math. Comput. 2010, 216, 2728–2733. [Google Scholar] [CrossRef]
- Fang, Y.; Dong, H.H.; Hou, Y.J.; Kong, Y. Frobenius integrable decompositions Of nonlinear evolution equations with modified term. Appl. Math. Comput. 2014, 226, 435–440. [Google Scholar] [CrossRef]
- Xu, T.; Tian, B. An extension of the Wronskian technique for the multicomponent Wronskian solution to the vector nonlinear Schrödinger equation. J. Math. Phys. 2010, 51, 359. [Google Scholar] [CrossRef]
- Corona-Corona, G. A Wronskian of Jost solutions. J. Math. Phys. 2004, 45, 4282–4287. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, W.X.; Qin, Z.Y. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 2018, 8, 427–436. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Zhang, X.; Yang, H. Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 2017, 73, 246–252. [Google Scholar] [CrossRef]
- Yong, X.L.; Ma, W.X.; Huang, Y.H.; Liu, Y. Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source. Comput. Math. Appl. 2018, 75, 2633–2659. [Google Scholar] [CrossRef]
- Wang, H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 2018, 85, 27–34. [Google Scholar] [CrossRef]
- Zeng, Z.J. Periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system with control. Commun. Korean Math. Soc. 2007, 22, 465–474. [Google Scholar] [CrossRef]
- Rostworowski, A. Higher order perturbations of Anti-de Sitter space and time-periodic solutions of vacuum Einstein equations. Phys. Rev. D 2017, 95, 16. [Google Scholar] [CrossRef]
- Savulescu, J. Wicked problems, complex solutions, and the cost of trust. J. Med. Ethics 2018, 44, 147–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datsko, B.; Gafiychuk, V. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fract. Calc. Appl. Anal. 2018, 21, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.Z.; Xu, J.; Fan, E.G. The Riemann-Hilbert problem and long-time asymptotics for the Kundu-Eckhaus equation with decaying initial value. Appl. Math. Lett. 2017, 76, 81–89. [Google Scholar] [CrossRef]
- Tian, S.F. Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 2017, 262, 506–558. [Google Scholar] [CrossRef]
- Zhang, N.; Xia, T.C.; Fan, E.G. A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line. Acta. Math. Appl. Engl. Ser. 2018, 34, 493–515. [Google Scholar] [CrossRef]
- Song, G.H.; Shin, S.Y. Design of corrugated waveguide filters by the Gel’fand-Levitan-Marchenko inverse-scattering method. J. Opt. Soc. Am. A 1985, 2, 1905–1915. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Zhang, F.; Takeno, S. Multistable nonlinear surface modes. Phys. D 1998, 119, 125–133. [Google Scholar] [CrossRef]
- McLaughlin, D.W.; Scott, A.C. Perturbation analysis of fluxon dynamics. Phys. Rev. A 1978, 18, 1652. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 1989, 61, 763. [Google Scholar] [CrossRef]
- Shchesnovich, V.S. Perturbation theory for nearly integrable multicomponent nonlinear PDEs. J. Math. Phys. 2002, 43, 1460–1486. [Google Scholar] [CrossRef] [Green Version]
- Doktorov, E.V.; Wang, J.D.; Yang, J.K. Perturbation theory for bright spinor Bose-Einstein condensate solitons. Phys. Rev. A 2008, 77, 043617. [Google Scholar] [CrossRef] [Green Version]
- Kaup, D.J. Integrable systems and squared eigenfunctions. Theor. Math. Phys. 2009, 159, 806–818. [Google Scholar] [CrossRef]
- Wang, D.S.; Zhang, D.J.; Yang, J.K. Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 2010, 51, 133–148. [Google Scholar] [CrossRef]
- Xiao, Y.; Fan, E.G. A Riemann-Hilbert approach to the Harry-Dym equation on the Line. Chin. Ann. Math. Ser. B 2014, 37, 373–384. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Dong, H.; Fang, Y. N-Soliton Solutions for the NLS-Like Equation and Perturbation Theory Based on the Riemann–Hilbert Problem. Symmetry 2019, 11, 826. https://doi.org/10.3390/sym11060826
Lin Y, Dong H, Fang Y. N-Soliton Solutions for the NLS-Like Equation and Perturbation Theory Based on the Riemann–Hilbert Problem. Symmetry. 2019; 11(6):826. https://doi.org/10.3390/sym11060826
Chicago/Turabian StyleLin, Yuxin, Huanhe Dong, and Yong Fang. 2019. "N-Soliton Solutions for the NLS-Like Equation and Perturbation Theory Based on the Riemann–Hilbert Problem" Symmetry 11, no. 6: 826. https://doi.org/10.3390/sym11060826
APA StyleLin, Y., Dong, H., & Fang, Y. (2019). N-Soliton Solutions for the NLS-Like Equation and Perturbation Theory Based on the Riemann–Hilbert Problem. Symmetry, 11(6), 826. https://doi.org/10.3390/sym11060826