A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant
Abstract
:1. Introduction
- for , the Horadam polynomials are the Fibonacci polynomials ;
- for and , the Horadam polynomials become the Lucas polynomials ;
- for and , the Horadam polynomials reduce to the Pell polynomials ;
- for and , the Horadam polynomials are the Pell–Lucas polynomials ;
- for , , and , the Horadam polynomials are the Chebyshev polynomials of the first kind ;
- for , , and , the Horadam polynomials become the Chebyshev polynomials of the second kind .
2. A Lemma
3. Main Results and Their Proof
4. Corollaries
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 1965, 3, 161–176. [Google Scholar]
- Horadam, A.F. Jacobsthal representation polynomials. Fibonacci Quart. 1997, 35, 137–148. [Google Scholar]
- Horzum, T.; Kocer, E.G. On some properties of Horadam polynomials. Int. Math. Forum 2009, 4, 1243–1252. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Pure and Applied Mathematics; Wiley-Interscience: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications, 2nd ed.; Pure and Applied Mathematics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 1. [Google Scholar]
- Cahill, N.D.; D’Errice, J.R.; Narayan, D.A.; Narayan, J.Y. Fibonacci determinants. Coll. Math. J. 2002, 33, 221–225. [Google Scholar] [CrossRef]
- Cahill, N.D.; Narayan, D.A. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart. 2004, 42, 216–221. [Google Scholar]
- Higgins, V.; Johnson, C. Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices. Linear Algebra Appl. 2016, 489, 104–122. [Google Scholar] [CrossRef]
- Martin, R.S.; Wilkinson, J.H. Handbook Series Linear Algebra: Similarity reduction of a general matrix to Hessenberg form. Numer. Math. 1968, 12, 349–368. [Google Scholar] [CrossRef]
- Qi, F.; Liu, A.-Q. Alternative proofs of some formulas for two tridiagonal determinants. Acta Univ. Sapientiae Math. 2018, 10, 287–297. [Google Scholar] [CrossRef]
- Qi, F. A determinantal representation for derangement numbers. Glob. J. Math. Anal. 2016, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Qi, F. Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials. J. Interdiscip. Math. 2020, 22. [Google Scholar] [CrossRef]
- Qi, F. Derivatives of tangent function and tangent numbers. Appl. Math. Comput. 2015, 268, 844–858. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Čerňanová, V.; Semenov, Y.S. Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 123–136. [Google Scholar]
- Qi, F.; Čerňanová, V.; Shi, X.-T.; Guo, B.-N. Some properties of central Delannoy numbers. J. Comput. Appl. Math. 2018, 328, 101–115. [Google Scholar] [CrossRef]
- Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbilisi Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A determinantal expression and a recurrence relation for the Euler polynomials. Adv. Appl. Math. Sci. 2017, 16, 297–309. [Google Scholar]
- Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discrete Math. 2018, 12, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers. Kragujevac J. Math. 2017, 41, 121–141. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant. Matematiche (Catania) 2017, 72, 167–175. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some determinantal expressions and recurrence relations of the Bernoulli polynomials. Mathematics 2016, 4, 65. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Two nice determinantal expressions and a recurrence relation for the Apostol–Bernoulli polynomials. J. Indones. Math. Soc. 2017, 23, 81–87. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113. [Google Scholar] [CrossRef]
- Qi, F.; Mahmoud, M.; Shi, X.-T.; Liu, F.-F. Some properties of the Catalan–Qi function related to the Catalan numbers. SpringerPlus 2016, 5, 1126. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 557–567. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Guo, B.-N. Two explicit formulas of the Schröder numbers. Integers 2016, 16, 15. [Google Scholar]
- Qi, F.; Shi, X.-T.; Liu, F.-F. Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers. Acta Univ. Sapientiae Math. 2016, 8, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar] [CrossRef]
- Qi, F.; Wang, J.-L.; Guo, B.-N. A determinantal expression for the Fibonacci polynomials in terms of a tridiagonal determinant. Bull. Iranian Math. Soc. 2019, 45. [Google Scholar] [CrossRef]
- Qi, F.; Wang, J.-L.; Guo, B.-N. A recovery of two determinantal representations for derangement numbers. Cogent Math. 2016, 3, 1232878. [Google Scholar] [CrossRef]
- Qi, F.; Wang, J.-L.; Guo, B.-N. A representation for derangement numbers in terms of a tridiagonal determinant. Kragujevac J. Math. 2018, 42, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Zhao, J.-L. Some properties of the Bernoulli numbers of the second kind and their generating function. Bull. Korean Math. Soc. 2018, 55, 1909–1920. [Google Scholar] [CrossRef]
- Qi, F.; Zhao, J.-L.; Guo, B.-N. Closed forms for derangement numbers in terms of the Hessenberg determinants. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2018, 112, 933–944. [Google Scholar] [CrossRef]
- Wei, C.-F.; Qi, F. Several closed expressions for the Euler numbers. J. Inequal. Appl. 2015, 2015, 219. [Google Scholar] [CrossRef] [Green Version]
- Bourbaki, N. Functions of a Real Variable, Elementary Theory; Translated from the 1976 French Original by Philip Spain, Elements of Mathematics (Berlin); Springer: Berlin, Germany, 2004. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Kızılateş, C.; Du, W.-S. A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant. Symmetry 2019, 11, 782. https://doi.org/10.3390/sym11060782
Qi F, Kızılateş C, Du W-S. A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant. Symmetry. 2019; 11(6):782. https://doi.org/10.3390/sym11060782
Chicago/Turabian StyleQi, Feng, Can Kızılateş, and Wei-Shih Du. 2019. "A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant" Symmetry 11, no. 6: 782. https://doi.org/10.3390/sym11060782
APA StyleQi, F., Kızılateş, C., & Du, W. -S. (2019). A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant. Symmetry, 11(6), 782. https://doi.org/10.3390/sym11060782