Rampant Arch and Its Optimum Geometrical Generation
Abstract
:1. Introduction
2. Rampant Arches of Two Arches Graphically Constructed
2.1. Rampant Arch 1: Known A and C (Starting of the Two Arches)
2.1.1. Method 1
- The ABCD rectangle is drawn;
- With center in A, circumference of R = AD, obtaining E;
- Mediatrix m of BE is drawn;
- The intersection of m with the rectangle determines centers O and O’.
2.1.2. Method 2
- The ABCD rectangle is drawn;
- Mediatrix m of AB determines M;
- With center in M, circumference of diameter AC is drawn;
- The intersection of this circumference with m is E;
- The perpendicular by E to AC determines the centers O and O’.
2.2. Rampant Arch 2: The Radii of the Two Arcs (R1 and R2) Are Known
- R1 + R2 = horizontal distance between both points (span);
- In A and B, perpendicular to the pillars where they are taken, R1 and R2 are used to obtain the centers O and O’, respectively, of the arches.
3. The Optimal Rampant Arch
3.1. Graphical Design
- Once the gradient “d” is defined, which indicates the slope of a flying buttress or, where appropriate, of a staircase, the start of the arches is determined by points A and B, which are on a line parallel to “d”.
- Assuming the problem is solved, centers O and O’ are on the straight perpendicular to the gradient line “d”. In addition, O and O’ are on the horizontal straight lines from A and B.
- If from B, the line BC is drawn perpendicular to “d”, where logically BC = OO’.
- At this point, the question is reduced to place a segment OO’ on the bisectors of the angles in M and N.
- Any PQ line was drawn parallel to “d”.
- The bisectors b1 and b2 of the angles were in P and Q.
- BC was traced perpendicular to “d”.
- BC was moved (by parallelism) until the TS = BC segment was obtained on the bisectors.
- TS was moved (by parallelism on the perpendicular to AC) to points O and O’, which are the centers of the arches.
3.2. Analytical Calculation
3.3. Computer Software
4. Case Studies
4.1. Church of Saint Urbain de Troyes (France)
4.2. Cathedral of Palma de Mallorca (Spain)
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warland, E.G. Modern Practical Masonry; Routledge: Abingdon-on-Thames, UK, 2006. [Google Scholar] [CrossRef]
- Theodossopoulos, D. Structural scheme of the Cathedral of Burgos. Struct. Anal. Hist. Constr. 2004, 4, 643–652. [Google Scholar]
- Sánchez-Beitia, S. On-site Stress Measurements of a Flying Buttress in the Palma de Mallorca (Spain) Cathedral. Rock Mech. Rock Eng. 2016, 49, 315–319. [Google Scholar] [CrossRef]
- Llopis-Pulido, V.; Durá, A.A.; Fenollosa, E.; Martínez, A. Analysis of the Structural Behavior of the Historical Constructions: Seismic Evaluation of the Cathedral of Valencia (Spain). Int. J. Archit. Herit. 2019, 13, 205–214. [Google Scholar] [CrossRef]
- Viollet le Duc, E. Dictionnaire Raisonné de L’architecture Française du XIe au XVIe Siècle. B. Bance, París. 1854. Available online: https://fr.wikisource.org/wiki/Livre:Viollet-le-Duc_-_Dictionnaire_raisonn%C3%A9_de_l%E2%80%99architecture_fran%C3%A7aise_du_XIe_au_XVIe_si%C3%A8cle,_1854-1868,_tome_1.djvu (accessed on 15 April 2019).
- Tarrío, I. Los arbotantes en el sistema de contrarresto de construcciones medievales: Teorías sobre su comportamiento estructural. In Actas del IX Congreso Nacional y I Internacional Hispanoamericano de Historia de la Construcción; Instituto Juan de Herrera: Madrid, Spain, 2015; Volume 3, p. 1677. [Google Scholar]
- Deio, G. Durham Cathedral Plans. Available online: https://www.medart.pitt.edu/image/england/Durham/Cathedral/Plans/dc149dur-b.jpg (accessed on 15 April 2019).
- Choisy, A. Histoire de L’architecture Tome II; Beránger, G., Ed.; Gauthier-Villars: Paris, France, 1899. [Google Scholar]
- Courtenay, L.T. The Engineering of Medieval Cathedrals; Routledge: Abingdon-on-Thames, UK, 2016. [Google Scholar] [CrossRef]
- Moya, D. El Origen de los Arbotantes en la Historia de la Arquitectura, X Certamen Arquímedes de Introducción a la Investigación Científica; Ministerio de Educación y CSIC: Madrid, Spain, 2011; p. 2. [Google Scholar]
- Tempesta, G.; Galassi, S. Safety evaluation of masonry arches. A numerical procedure based on the thrust line closest to the geometrical axis. Int. J. Mech. Sci. 2019, 155, 206–221. [Google Scholar] [CrossRef]
- Panofsky, E. Gothic and Architecture and Scholasticism; Archabbey Press: New York, NY, USA, 1957; ISBN 0529020920. [Google Scholar]
- Davis, M.T.; Neagley, L.E. Mechanics and Meaning: Plan Design at Saint-Urbain, Troyes and Saint-Ouen, Rouen. Gesta 2000, 39, 161–182. [Google Scholar] [CrossRef]
- Heyman, J. Beauvais cathedral. Trans. Newcom. Soc. 1967, 40, 15–35. [Google Scholar] [CrossRef]
- Pelà, L.; Bourgeois, J.; Roca, P.; Cervera, M.; Chiumenti, M. Analysis of the effect of provisional ties on the construction and current deformation of Mallorca Cathedral. Int. J. Archit. Herit. 2016, 10, 418–437. [Google Scholar] [CrossRef]
- Derand, F. L’Architecture des Voutes, ou l’art, traits et coupes des voutes; traite tres-utile, méme nécessaire à tous les architectes, maitres-maçons, appareilleurs, tailleurs de pierres, et généralement à tous ceux qui se mélent de l’Architecture, meme militaire, París: S. Cramoysi, 1643. Available online: https://gallica.bnf.fr/ark:/12148/btv1b8626566f/f7.image (accessed on 24 April 2019).
- Blondel, F.N. Cours d’ Architecture enseigné dans l’Académie royale d’ architecture. Ed. P. Auboin et F. Clouzier (Paris). 1675. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k85661p.r=cours%20architecture%20cours%20architecture?rk=21459;2 (accessed on 24 April 2019).
- Casado, E.A.; Sánchez, J.M.D. Geometría del arco carpanel. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas 2015, 79, 17–25. [Google Scholar]
- Quintas, V. Structural analysis of flying buttresses. Eur. J. Environ. Civ. Eng. 2017, 21, 471–507. [Google Scholar] [CrossRef]
- Portioli, F.; Cascini, L.; Casapulla, C.; D’Aniello, M. Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming. Eng. Struct. 2013, 57, 232–247. [Google Scholar] [CrossRef]
- Frezier, A.F. La Théorie et la Pratique de la Coupe des Pierres et des Bois pour la Construction des Voûtes et Autres Parties des Bâtiments Civils & Militaires, ou Traité de Stéréotomie, à L’usage de L’architecture. Tome 3. Strasbourg and Paris (1737-9). Available online: https://gallica.bnf.fr/ark:/12148/bpt6k1040142z/f491.image (accessed on 15 April 2019).
- Breymann, G.U. Bau-Constructions-Lehre. Berlag von Gustav Beise. 1881. Available online: https://www.e-rara.ch/zut/content/pageview/8642945 (accessed on 15 April 2019).
- Heyman, J. The stone skeleton. Int. J. Solids Struct. 1966, 2, 249–279. [Google Scholar] [CrossRef]
- Theodossopoulos, D.; Sinha, B.P.; Usmani, A.S. Case study of the failure of a cross vault: Church of Holyrood Abbey. J. Archit. Eng. 2003, 9, 109–117. [Google Scholar] [CrossRef]
- Bruzelius, C. The Second Campaign at Saint-Urbain at Troyes. Speculum 1987, 62, 635–640. [Google Scholar] [CrossRef]
- Davis, M.T. On the Threshold of the Flamboyant: The Second Campaign of Construction of Saint-Urbain, Troyes. Speculum 1984, 59, 847–884. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, M.; Pelà, L.; Clemente, R.; Chiumenti, M. Continuum FE models for the analysis of Mallorca Cathedral. Eng. Struct. 2013, 46, 653–670. [Google Scholar] [CrossRef]
- Elyamani, A.; Roca, P.; Caselles, O.; Clapes, J. Seismic safety assessment of historical structures using updated numerical models: The case of Mallorca cathedral in Spain. Eng. Fail. Anal. 2017, 74, 54–79. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Caselles, J.O.; Clapés, J.; Martinez, G.; Osorio, R. Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT E Int. 2013, 59, 40–47. [Google Scholar] [CrossRef]
- Fitchen, J. The Construction of Gothic Cathedrals: A Study of Medieval Vault Erection; University of Chicago Press: Chicago, IL, USA, 1981. [Google Scholar]
- San-Antonio-Gómez, C.; Velilla, C.; Manzano-Agugliaro, F. Photogrammetric techniques and surveying applied to historical map analysis. Surv. Rev. 2015, 47, 115–128. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Montoya, F.G.; San-Antonio-Gómez, C.; López-Márquez, S.; Aguilera, M.J.; Gil, C. The assessment of evolutionary algorithms for analyzing the positional accuracy and uncertainty of maps. Expert Syst. Appl. 2014, 41, 6346–6360. [Google Scholar] [CrossRef]
- San-Antonio-Gómez, C.; Velilla, C.; Manzano-Agugliaro, F. Urban and landscape changes through historical maps: The Real Sitio of Aranjuez (1775–2005), a case study. Comput. Environ. Urban Syst. 2014, 44, 47–58. [Google Scholar] [CrossRef]
- Perea-Moreno, A.J.; Aguilera-Ureña, M.J.; Larriva, M.D.; Manzano-Agugliaro, F. Assessment of the potential of UAV video image analysis for planning irrigation needs of golf courses. Water 2016, 8, 584. [Google Scholar] [CrossRef]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, E.; Georgiou, E.; Psaltis, D.; Stylianidis, E. Uav for Mapping Historic Buildings: From 3d Modelling to Bim. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 8th International Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, Bergamo, Italy, 6–8 February 2019; International Society of Photogrammetry and Remote Sensing (ISPRS): Hannover, Germany, 2019. [Google Scholar]
- Yilmaz, H.M.; Yakar, M.; Gulec, S.A.; Dulgerler, O.N. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 2007, 8, 428–433. [Google Scholar] [CrossRef]
- Jiang, R.; Jáuregui, D.V.; White, K.R. Close-range photogrammetry applications in bridge measurement: Literature review. Measurement 2008, 41, 823–834. [Google Scholar] [CrossRef]
- Grussenmeyer, P.; Landes, T.; Voegtle, T.; Ringle, K. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 213–218. [Google Scholar]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velilla, C.; Alcayde, A.; San-Antonio-Gómez, C.; Montoya, F.G.; Zavala, I.; Manzano-Agugliaro, F. Rampant Arch and Its Optimum Geometrical Generation. Symmetry 2019, 11, 627. https://doi.org/10.3390/sym11050627
Velilla C, Alcayde A, San-Antonio-Gómez C, Montoya FG, Zavala I, Manzano-Agugliaro F. Rampant Arch and Its Optimum Geometrical Generation. Symmetry. 2019; 11(5):627. https://doi.org/10.3390/sym11050627
Chicago/Turabian StyleVelilla, Cristina, Alfredo Alcayde, Carlos San-Antonio-Gómez, Francisco G. Montoya, Ignacio Zavala, and Francisco Manzano-Agugliaro. 2019. "Rampant Arch and Its Optimum Geometrical Generation" Symmetry 11, no. 5: 627. https://doi.org/10.3390/sym11050627
APA StyleVelilla, C., Alcayde, A., San-Antonio-Gómez, C., Montoya, F. G., Zavala, I., & Manzano-Agugliaro, F. (2019). Rampant Arch and Its Optimum Geometrical Generation. Symmetry, 11(5), 627. https://doi.org/10.3390/sym11050627