On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Optimized Hotspot Analysis
2.3. Cluster and Outlier Analysis (Anselin Local Moran’s I)
2.4. Multi-Distance Spatial Cluster Analysis (Ripley’s K Function)
2.5. Spatial Autocorrelation (Global Moran’s I)
3. Results and Discussion
3.1. Accuracy Assessment Result
3.2. Change Detection
3.3. Spatial Statistcs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elfadaly, A.; Attia, W.; Qelichi, M.M.; Murgante, B.; Lasaponara, R. Management of Cultural Heritage Sites Using Remote Sensing Indices and Spatial Analysis Techniques. Surv. Geophys. 2018, 39, 1347–1377. [Google Scholar]
- Elfadaly, A.; Attia, W.; Lasaponara, R. Monitoring the Environmental Risks Around Medinet Habu and Ramesseum Temple at West Luxor, Egypt, Using Remote Sensing and GIS Techniques. J. Archaeol. Method Theory 2018, 25, 587–610. [Google Scholar] [CrossRef]
- Elfadaly, A.; Wafa, O.; Abouarab, M.A.; Guida, A.; Spanu, P.G.; Lasaponara, R. Geo-Environmental Estimation of Land Use Changes and Its Effects on Egyptian Temples at Luxor City. ISPRS Int. J. Geoinf. 2017, 6, 378. [Google Scholar] [CrossRef]
- Elfadaly, A.; Lasaponara, R.; Murgante, B.; Qelichi, M.M. Cultural Heritage Management Using Analysis of Satellite Images and Advanced GIS Techniques at East Luxor, Egypt and Kangavar, Iran (A Comparison Case Study). In Proceedings of the International Conference on Computational Science and Its Applications, Trieste, Italy, 2–5 July 2017; Springer: Cham, Switzerland; pp. 152–168. [Google Scholar]
- Lasaponara, R.; Murgante, B.; Elfadaly, A.; Qelichi, M.M.; Shahraki, S.Z.; Wafa, O.; Attia, W. Spatial open data for monitoring risks and preserving archaeological areas and landscape: Case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 2017, 9, 572. [Google Scholar] [CrossRef]
- Lasaponara, R.; Elfadaly, A.; Attia, W. Low cost space technologies for operational change detection monitoring around the archaeological area of Esna-Egypt. In Proceedings of the International Conference on Computational Science and Its Applications, Beijing, China, 4–7 July 2016; Springer: Cham, Switzerland; pp. 611–621. [Google Scholar]
- Friedman, S.Z.; Angelici, G.L. The detection of urban expansion from Landsat imagery. Remote Sens. Q. 1979, 1, 58–79. [Google Scholar]
- Howarth, P.J.; Boasson, E. Landsat digital enhancements for change detection in urban environments. Remote Sens. Environ. 1983, 13, 149–160. [Google Scholar] [CrossRef]
- Jensen, J.R.; Toll, D.L. Detecting residential land-use development at the urban fringe. Photogramm. Eng. Remote Sens. 1982, 48, 629–643. [Google Scholar]
- Todd, W.J. Urban and regional land use change detected by using Landsat data. J. Res. US Geol. Surv. 1977, 5, 529–534. [Google Scholar]
- Michalak, W.Z. GIS in land use change analysis: Integration of remotely sensed data into GIS. Appl. Geogr. 1993, 13, 28–44. [Google Scholar] [CrossRef]
- Ryznar, R.M.; Wagner, T.W. Using remotely sensed imagery to detect urban change: Viewing Detroit from space. J. Am. Plan. Assoc. 2001, 67, 327–336. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef] [Green Version]
- Romero, R.; Ramis, C.; Guijarro, J.A.; Sumner, G. Daily rainfall affinity areas in Mediterranean Spain. Int. J. Climatol. A J. R. Meteorol. Soc. 1999, 19, 557–578. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Arthur, S.T. The impact of land use—Land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Robinson, G.S.; Pigott Burney, L.; Burney, D.A. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol. Monogr. 2005, 75, 295–315. [Google Scholar] [CrossRef]
- Tatem, A.J.; Noor, A.M.; Hay, S.I. Defining approaches to settlement mapping for public health management in Kenya using medium spatial resolution satellite imagery. Remote Sens. Environ. 2004, 93, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.; Ban, Y. Context-based mapping of damaged buildings from high-resolution optical satellite images. Int. J. Remote Sens. 2010, 31, 3411–3425. [Google Scholar] [CrossRef]
- Del Frate, F.; Pacifici, F.; Schiavon, G.; Solimini, C. Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 800–809. [Google Scholar] [CrossRef]
- Strachan, D. Carpow in Context: A Late Bronze Age logboat from the Tay—By David Strachan; The Carpow Logboat: A Bronze Age vessel brought to life. Int. J. Naut. Archaeol. 2011, 40, 204–234. [Google Scholar] [CrossRef]
- Mohamed, A.A.F.A.A. Alexandria zero carbon city. Ph.D. Thesis, Faculty of Engineering & Technology, Arab Academy for Science, Alexandria University, Alexandria Zero Carbon City, Egypt, 14 December 2013. [Google Scholar]
- Hemeda, S.; Pitilakis, K.; Bandis, S. Geotechnical, Geophysical Investigations and Seismic Response Analysis of the Underground Tombs in Mustafa Kamil Necropolis. Mediter. Archaeol. Archaeom. 2015, 15, 191–207. [Google Scholar]
- Paoletti, V.; Secomandi, M.; Piromallo, M.; Giordano, F.; Fedi, M.; Rapolla, A. Magnetic survey at the submerged archaeological site of Baia, Naples, Southern Italy. Archaeol. Prospect. 2005, 12, 51–59. [Google Scholar] [CrossRef]
- Passaro, S.; Barra, M.; Saggiomo, R.; Di Giacomo, S.; Leotta, A.; Uhlen, H.; Mazzola, S. Multi-resolution morpho-bathymetric survey results at the Pozzuoli–Baia underwater archaeological site (Naples, Italy). J. Archaeol. Sci. 2013, 40, 1268–1278. [Google Scholar] [CrossRef]
- Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C. 40 Ar/39 Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Volcanol. 2011, 73, 1323–1336. [Google Scholar] [CrossRef]
- Esri. How Spatial Autocorrelation: Moran’s I (Spatial Statistics) Works. Available online: http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=how_spatial_autocorrelation:moran%27s_i_(spatial_statistics)_works (accessed on 25 January 2019).
- Zhu, Y.; Newsam, S. Spatio-temporal sentiment hotspot detection using geotagged photos. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, CA, USA, 31 October–3 November 2016; p. 76. [Google Scholar]
- Wang, Y. Climate Change and Its Ecological and Socioeconomic Impact: Evidence from China’s Historical Document for Qing Dynasty. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 30 May 2010; pp. 1–174. [Google Scholar]
- Jindal, S.; Sharma, K. Spatial data mining for finding nearest neighbor and outlier detection. Int. J. Latest Trends Eng. Technol. 2017, 8, 30–36. [Google Scholar] [CrossRef]
- Ruda, A. Exploring tourism possibilities using GIS-based spatial association methods. Geogr. Tech. 2016, 11, 87–101. [Google Scholar] [CrossRef]
- Marcon, E.; Traissac, S.; Lang, G. A Statistical Test for Ripley’s Function Rejection of Poisson Null Hypothesis. ISRN Ecol. 2013, 2013, 753475. [Google Scholar] [CrossRef]
- Sayer, D.; Wienhold, M. A GIS-investigation of four early Anglo-Saxon cemeteries: Ripley’s K-function analysis of spatial groupings amongst graves. Soc. Sci. Comput. Rev. 2013, 31, 71–89. [Google Scholar] [CrossRef]
- Bjørnstad, O.N.; Ims, R.A.; Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 1999, 14, 427–432. [Google Scholar] [CrossRef]
- Sun, W.; Jones, B. Using multi-scale spatial and statistical analysis to assess the effects of brownfield redevelopment on surrounding residential property values in Milwaukee County, USA. Morav. Geogr. Rep. 2013, 21, 56–64. [Google Scholar] [CrossRef]
Number | Satellite | Sensor | Resolution (M) | Acquisition Date | Source |
---|---|---|---|---|---|
1 | Landsat | TM4 | 30 m | July 1998, 1999 | USGS |
2 | Landsat | TM5 | 30 m | July 2008 | USGS |
3 | Sentinel | 2A, 2B | 10 m | July 2018 | ESA |
Year | Alexandria Area | Baia Area | ||
---|---|---|---|---|
Kappa Coefficient | Overall Accuracy | Kappa Coefficient | Overall Accuracy | |
1998, 1999 | 96.2558% | 0.9238 | 98.8012% | 0.9739 |
2008 | 96.4044% | 0.9374 | 97.1354% | 0.9395 |
2018 | 92.8251% | 0.8871 | 89.8701% | 0.7896 |
Class | Study Area | 1998, 1999 (km2) | Change Detection ± km2 | 2008 (km2) | Change Detection ± km2 | 2018 (km2) |
---|---|---|---|---|---|---|
Alexandria | 16.44 | 1.96 | 18.4 | 2.39 | 20.79 | |
Change % | 45.06% | 54.94% | ||||
Urban | ||||||
Baia | 3.58 | 0.61 | 4.19 | 0.51 | 4.7 | |
Change % | 54.46% | 45.54% |
Year | Moran’s Index | z-Score | Type of Spatial Distribution |
---|---|---|---|
1999 | 0.236786 | 66.648117 | Clustered |
2008 | 0.131808 | 49.497299 | Clustered |
2018 | 0.114997 | 56.709045 | Clustered |
Year | Moran’s Index | z-Score | Type of Spatial Distribution |
---|---|---|---|
1998 | 0.057303 | 9.354977 | Clustered |
2008 | 0.051683 | 8.473026 | Clustered |
2018 | 0.063031 | 10.685925 | Clustered |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elfadaly, A.; Lasaponara, R. On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability 2019, 11, 2110. https://doi.org/10.3390/su11072110
Elfadaly A, Lasaponara R. On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability. 2019; 11(7):2110. https://doi.org/10.3390/su11072110
Chicago/Turabian StyleElfadaly, Abdelaziz, and Rosa Lasaponara. 2019. "On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy" Sustainability 11, no. 7: 2110. https://doi.org/10.3390/su11072110
APA StyleElfadaly, A., & Lasaponara, R. (2019). On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability, 11(7), 2110. https://doi.org/10.3390/su11072110