Geodesign Processes and Ecological Systems Thinking in a Coupled Human-Environment Context: An Integrated Framework for Landscape Architecture
Abstract
:1. Introduction
2. Evolving Definitions and Perspectives in Geodesign
2.1. Geodesign as Geography-Centered Multidisciplinary Science
2.2. Geodesign as an Iterative Science and Design Process
2.3. Geodesign as Community Participatory Planning
2.4. Geodesign as Methodology for Landscape-Based Sustainability
2.5. Connecting to Landscape Studies
3. Core Concepts of Ecological Systems Thinking
“Complex systems are counterintuitive. Most of our intuitive responses have been developed from first-order, negative feedback loops where the goal seeking action has one state variable. This helps to link cause and effect with space and time. But cause and effect are not always related to the same space and don’t always occur in successional time periods. A complex system has a multiplicity of intersecting feedback loops, controlled by nonlinear relationships. In the complex system the cause of an occurrence may lie far back in time and far away from the symptoms noted. In fact causes are usually found in the policies and structure of the system”.[107]
4. Integrating Geodesign with Ecological Systems Thinking: A Heuristic Framework
5. Three Dimensions of the Integrative Framework
5.1. Social-Ecological Potential
5.2. Spatial-Temporal Association
5.3. Adding Another Dimension: Resilience of the Coupled Human-Environment Systems
6. Discussion
6.1. Major Findings and Contributions
6.2. Implications
6.3. Gaps and Prospects
6.3.1. Theoretical Gaps and Prospects
6.3.2. Practical Gaps and Prospects
6.3.3. Technological Gaps and Prospects
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Steinitz, C. A Framework for Geodesign; ESRI Press: Redlands, CA, USA, 2012; Chapter 1; pp. 3–18. [Google Scholar]
- Flaxman, M. Geodesign: Fundamental principles and routes forward. In Proceedings of the GeoDesign Summit 2010, Esri’s Redlands, CA, USA, 6–8 January 2010. [Google Scholar]
- Miller, W.R. Introducing Geodesign: The Concept; ESRI Press: Redlands, CA, USA, 2012. [Google Scholar]
- Li, W.; Milburn, L.-A. The evolution of geodesign as a design and planning tool. Landsc. Urban Plan. 2016, 156, 5–8. [Google Scholar] [CrossRef]
- Steiner, F.R.; Shearer, A.W. Geodesign—Changing the world, changing design. Landsc. Urban Plan. 2016, 1–4. [Google Scholar] [CrossRef]
- Kunzmann, K. Geodesign: Chance oder gefahr? Inf. Raumentwickl. 1993, 7, 389–396. [Google Scholar]
- Dangermond, J. Geodesign and gis–designing our futures. Peer Reviewer Proceedings of Digital Landscape Architecture, Anhalt University of Applied Science, Berlin, Germany; 2010. Available online: http://www.kolleg.loel.hs-anhalt.de/landschaftsinformatik/436.html (accessed on 26 August 2018).
- Flaxman, M. Geodesign: Fundamental principles. In Proceedings of the Geodesign Summit, Redlands, CA, USA, 6–8 January 2010; Available online: https://www.esri.com/videos/watch?videoid=106&isLegacy=true (accessed on 26 August 2018).
- Goodchild, M.F. Towards geodesign: Repurposing cartography and GIS? Cartogr. Perspect. 2010, 7–22. [Google Scholar] [CrossRef]
- Deal, B.; Petri, A.; Pan, H.; Goldenberg, R.; Kalantari, Z.; Cvetkovic, V. Socio-Environmental Resilience and Complex Urban Systems Modeling. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–28 April 2017; p. 18478. [Google Scholar]
- Eikelboom, T.; Janssen, R. Comparison of geodesign tools to communicate stakeholder values. Group Decis. Negotiat. 2015, 24, 1065–1087. [Google Scholar] [CrossRef]
- Orland, B. The path to geodesign! The family car of digital landscape architecture? Digit. Landsc. Arch. 2015, 32–41. [Google Scholar]
- Rivero, R.; Smith, A.; Ballal, H.; Steinitz, C. Promoting Collaborative Geodesign in a Multidisciplinary and Multiscale Environment: Coastal Georgia 2050, USA; Peer Reviewed Proceedings of Digital Landscape Architecture: Bernburg, Germany, 2015; pp. 42–58. [Google Scholar]
- Foster, K. Geodesign parsed: Placing it within the rubric of recognized design theories. Landsc. Urban Plan. 2016, 156, 92–100. [Google Scholar] [CrossRef]
- Eikelboom, T.; Janssen, R.; Stewart, T.J. A spatial optimization algorithm for geodesign. Landsc. Urban Plan. 2015, 144, 10–21. [Google Scholar] [CrossRef]
- Deal, B.; Petri, A.; Pan, H.; Timm, S. 14 big data, socio-environmental resilience and urban systems planning support. In Big Data Regional Science; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Deal, B.; Pan, H.; Timm, S.; Pallathucheril, V. The role of multidirectional temporal analysis in scenario planning exercises and planning support systems. Comput. Environ. Urban Syst. 2017, 64, 91–102. [Google Scholar] [CrossRef]
- Brown, T. Change by Design; HarperBusiness: Toronto, ON, Canada, 2009. [Google Scholar]
- Steinitz, C. On change and geodesign. Landsc. Urban Plan. 2016, 156, 23–25. [Google Scholar] [CrossRef]
- Eikelboom, T.; Janssen, R. Collaborative use of geodesign tools to support decision-making on adaptation to climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Steinitz, C. A framework for geodesign. Esri Press 2012, 1, 3–18. [Google Scholar]
- Ervin, S.M. Technology in geodesign. Landsc. Urban Plan. 2016, 156, 12–16. [Google Scholar] [CrossRef]
- Campagna, M. Metaplanning: About designing the geodesign process. Landsc. Urban Plan. 2016, 156, 118–128. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Slotterback, C.S.; Runck, B.; Pitt, D.G.; Kne, L.; Jordan, N.R.; Mulla, D.J.; Zerger, C.; Reichenbach, M. Collaborative geodesign to advance multifunctional landscapes. Landsc. Urban Plan. 2016, 156, 71–80. [Google Scholar] [CrossRef]
- Meadows, D.H. Thinking in Systems; Chelsea Green Publishing: White River Junction, VT, USA, 2008; pp. 77–78. [Google Scholar]
- McHarg, I.L.; Mumford, L. Design with Nature; American Museum of Natural History: New York, NY, USA, 1969. [Google Scholar]
- McHarg, I.L. A Quest for Life: An Autobiography; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Steinitz, C. Meaning and the congruence of urban form and activity. J. Am. Inst. Plan. 1968, 34, 233–248. [Google Scholar] [CrossRef]
- Campagna, M.; Di Cesare, E.A. Geodesign: Lost in regulations (and in practice). In Smart Energy in the Smart City; Springer: Cham, Switzerland, 2016; pp. 307–327. [Google Scholar]
- Huang, G.; Zhou, N. Geodesign in developing countries: The example of the master plan for wulingyuan national scenic area, china. Landsc. Urban Plan. 2016, 156, 81–91. [Google Scholar] [CrossRef]
- Aina, Y.; Al-Naser, A.; Garba, S. Towards an integrative theory approach to sustainable urban design in saudi arabia: The value of geodesign. In Advances in Landscape Architecture; InTech: Vienna, Austria, 2013. [Google Scholar]
- Walliss, J.; Walls, W. A Performative Approach to Geodesign: Conceiving Open Space in a Highly Polluted Beijing; Digital Landscape Architecture Conference ETH Zurich: Zurich, Switzerland, 2014; pp. 21–23. [Google Scholar]
- Cross, N. Science and design methodology: A review. Res. Eng. Des. 1993, 5, 63–69. [Google Scholar] [CrossRef]
- Langrish, J.Z. The design methods movement: From optimism to darwinism. In Proceedings of the DRS2016: Design + Research + Society Future Focused Thinking, Brighton, UK, 27–30 June 2016. [Google Scholar]
- Wilson, M.W. On the criticality of mapping practices: Geodesign as critical GIS? Landsc. Urban Plan. 2015, 142, 226–234. [Google Scholar] [CrossRef]
- Gu, Y. Rejuvenation of the Ditch-Redefining the Landscape of the Embarras River with Integrated Analytical & Design Approaches. Master’s Thesis, University of Illinois at Urbana, Champaign, IL, USA, 2016. [Google Scholar]
- Brian Deal, Y.G.; Pan, H. Community, science, and design: Using dynamic spatial simulation models in a three-facet approach to geodesign. In Digital Landscape Architecture—3rd International Digital Landscape Seminar; Northeast University Press: Boston, MA, USA, 2017; pp. 341–355. [Google Scholar]
- Simon, H.A. The New Science of Management Decision; Harper & Brothers: New York, NY, USA, 1960. [Google Scholar]
- Asimow, M. Introduction to Design; Prentice-Hall: Upper Saddle River, NJ, USA, 1962. [Google Scholar]
- Fogler, H.S.; LeBlanc, S.E.; Rizzo, B.R. Strategies for Creative Problem Solving; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Kumar, V. 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ruggeri, D.; Young, D. Community in the information age: Exploring the social potential of web-based technologies in landscape architecture and community design. Front. Arch. Res. 2016, 5, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N. Urban Planning Theory Since 1945; Sage: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Latour, B. Facing Gaia; Polity Press: Cambridge, UK, 2017. [Google Scholar]
- Irvin, R.A.; Stansbury, J. Citizen participation in decision making: Is it worth the effort? Public Adm. Rev. 2004, 64, 55–65. [Google Scholar] [CrossRef]
- Putnam, R.D. Bowling alone: America’s declining social capital. J. Democr. 1995, 6, 65–78. [Google Scholar] [CrossRef]
- Hester, R.T., Jr. A refrain with a view [participation with a view]. Places 1999, 12, 13–25. [Google Scholar]
- Loukaitou-Sideris, A. The byzantine-latino quarter: Creating community in los angeles’ inner city. disP Plan. Rev. 2000, 36, 16–22. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, W.; Sullivan, W.C. Making pervasive sensing possible: Effective travel mode sensing based on smartphones. Comput. Environ. Urban Syst. 2016, 58, 52–59. [Google Scholar] [CrossRef]
- Moran, S.; Perreault, M.; Smardon, R. Finding our way: A case study of urban waterway restoration and participatory process. Landsc. Urban Plan. 2016. [Google Scholar] [CrossRef]
- Wu, C.-L.; Chiang, Y.-C. A geodesign framework procedure for developing flood resilient city. Habitat Int. 2018, 75, 78–89. [Google Scholar] [CrossRef]
- Beebeejaun, Y.; Durose, C.; Rees, J.; Richardson, J.; Richardson, L. ‘Beyond text’: Exploring ethos and method in co-producing research with communities. Community Dev. J. 2013, 49, 37–53. [Google Scholar] [CrossRef]
- Fahy, F.; Cinnéide, M.Ó. Re-constructing the urban landscape through community mapping: An attractive prospect for sustainability? Area 2009, 41, 167–175. [Google Scholar] [CrossRef]
- Manzini, E.; Rizzo, F. Small projects/large changes: Participatory design as an open participated process. CoDesign 2011, 7, 199–215. [Google Scholar] [CrossRef]
- Levrel, H.; Etienne, M.; Kerbiriou, C.; Page, C.L.; Rouan, M. Co-modeling process, negotiations, and power relationships: Some outputs from a MAB project on the island of ouessant. Soc. Nat. Resour. 2009, 22, 172–188. [Google Scholar] [CrossRef]
- Videira, N.; Antunes, P.; Santos, R.; Lopes, R. A participatory modelling approach to support integrated sustainability assessment processes. Syst. Res. Behav. Sci. 2010, 27, 446–460. [Google Scholar] [CrossRef]
- Fawcett, S.B.; Boothroyd, R.; Schultz, J.A.; Francisco, V.T.; Carson, V.; Bremby, R. Building capacity for participatory evaluation within community initiatives. J. Prev. Interv. Community 2003, 26, 21–36. [Google Scholar] [CrossRef]
- Smits, P.A.; Champagne, F. An assessment of the theoretical underpinnings of practical participatory evaluation. Am. J. Eval. 2008, 29, 427–442. [Google Scholar] [CrossRef]
- Shaw, A.; Sheppard, S.; Burch, S.; Flanders, D.; Wiek, A.; Carmichael, J.; Robinson, J.; Cohen, S. Making local futures tangible—Synthesizing, downscaling, and visualizing climate change scenarios for participatory capacity building. Glob. Environ. Chang. 2009, 19, 447–463. [Google Scholar] [CrossRef]
- Waldheim, C. Landscape as Urbanism: A General Theory; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Campagna, M. The geographic turn in social media: Opportunities for spatial planning and geodesign. In International Conference on Computational Science and Its Applications, 2014; Springer: Cham, Switzerland, 2014; pp. 598–610. [Google Scholar]
- Pickett, S.T.; Burch, W.R.; Dalton, S.E.; Foresman, T.W.; Grove, J.M.; Rowntree, R. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst. 1997, 1, 185–199. [Google Scholar] [CrossRef]
- Zipperer, W.C.; Wu, J.; Pouyat, R.V.; Pickett, S.T. The application of ecological principles to urban and urbanizing landscapes. Ecol. Appl. 2000, 10, 685–688. [Google Scholar] [CrossRef]
- Grimm, N.B.; Grove, J.G.; Pickett, S.T.; Redman, C.L. Integrated approaches to long-term studies of urban ecological systems: Urban ecological systems present multiple challenges to ecologists—Pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. AIBS Bull. 2000, 50, 571–584. [Google Scholar]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the united states. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (Southern) european perspective. Landsc. Urban Plan. 2014, 126, 66–73. [Google Scholar] [CrossRef]
- Forman, R.T. The Urban Region: Natural Systems in Our Place, Our Nourishment, Our Home Range, Our Future; Springer: Berlin, Germany, 2008. [Google Scholar]
- Forman, R.T. Urban Regions: Ecology and Planning Beyond the City; Cambridge University Press: London, UK, 2008. [Google Scholar]
- Zonneveld, I.S. Land Ecology: An Introduction to Landscape Ecology as a Base for Land Evaluation, Land Management and Conservation; SPB Academic Publishing: The Hague, The Netherlands, 1995. [Google Scholar]
- Cerreta, M.; Inglese, P.; Manzi, M.L. A multi-methodological decision-making process for cultural landscapes evaluation: The green lucania project. Procedia-Soc. Behav. Sci. 2016, 216, 578–590. [Google Scholar] [CrossRef]
- Simon, H. Public administration in today’s world of organizations and markets. PS Political Sci. Politics 2000, 33, 749–756. [Google Scholar]
- Johnson, A.R. Spatiotemporal hierarchies in ecological theory and modeling. In GIS and Environmental Modeling: Progress and Research Issues; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 451–456. [Google Scholar]
- Giampietro, M. Using hierarchy theory to explore the concept of sustainable development. Futures 1994, 26, 616–625. [Google Scholar] [CrossRef]
- Van Marrewijk, M. Concepts and definitions of csr and corporate sustainability: Between agency and communion. J. Bus. Ethics 2003, 44, 95–105. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. Available online: https://wwwannualreviewsorg/journal/ecolsys/ (accessed on 26 August 2018). [CrossRef]
- Deal, B.; Gu, Y. Resilience thinking meets social-ecological systems (sess): A general framework for resilient planning support systems (psss). J. Dig. Landsc. Archit. 2018, 200–207. [Google Scholar]
- Norberg, J.; Cumming, G. Complexity theory for a sustainable future; Columbia University Press: New York, NY, USA, 2008. [Google Scholar]
- Fiksel, J. Sustainability and resilience: Toward a systems approach. J. Sustain.: Sci., Pract. Policy 2006, 2, 14–21. [Google Scholar]
- Folke, C.; Carpenter, S.; Elmqvist, T.; Gunderson, L.; Holling, C.S.; Walker, B. Resilience and sustainable development: Building adaptive capacity in a world of transformations. AMBIO: A J. Hum. Environ. 2002, 31, 437–440. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazard. Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Zimmerman, R. Social implications of infrastructure network interactions. J. Urban Technol. 2001, 8, 97–119. [Google Scholar] [CrossRef]
- Bell, M.A. The five principles of organizational resilience. Gartner Res. 2002. Available online: https://www.scribd.com/document/160159276/The-Five-Principles-of-Organizational-Resilience (accessed on 26 August 2018).
- Rosenfeld, A.; Kak, A. Edge detection. In Digital Picture Processing; Academic Press: Orlando, FL, USA, 1982; pp. 84–112. [Google Scholar]
- Bulkeley, H.; Betsill, M. Rethinking sustainable cities: Multilevel governance and the ‘urban’ politics of climate change. Environ. Politics 2005, 14, 42–63. [Google Scholar] [CrossRef]
- Gu, Y.; Deal, B. Coupling systems thinking and geodesign processes in land-use modelling, design, and planning. J. Dig. Landsc. Archit. 2018, 3, 2. [Google Scholar]
- Gunderson, L.H. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Holling, C.S. The resilience of terrestrial ecosystems: Local surprise and global change. In Sustainable Development of the Biosphere; Cambridge University Press: Cambridge, UK, 1986; pp. 292–317. [Google Scholar]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Westley, F.R.; Tjornbo, O.; Schultz, L.; Olsson, P.; Folke, C.; Crona, B.; Bodin, Ö. A theory of transformative agency in linked social-ecological systems. Ecol. Soc. 2013, 18, 27. [Google Scholar] [CrossRef]
- Johnson, T.A. Harmonic vocabulary in the music of john adams: A hierarchical approach. J. Music Theory 1993, 37, 117–156. [Google Scholar] [CrossRef]
- Wu, J.; Loucks, O.L. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. In The Quarterly Review of Biology; The University of Chicago: Chicago, IL, USA, 1995; pp. 439–466. [Google Scholar]
- O’Neill, R.V. Hierarchy Theory and Global Change; Oak Ridge National Lab: Oak ridge, TN, USA, 1985. [Google Scholar]
- Phillips, J.D. Biogeomorphology and landscape evolution: The problem of scale. In Biogeomorphology, Terrestrial and Freshwater Systems; Elsevier: Amsterdam, The Netherlands, 1995; pp. 337–347. [Google Scholar]
- Chrisman, N. Charting the Unknown: How Computer Mapping at Harvard Became Gis; Esri Press: Los Angeles, CA, USA, 2006. [Google Scholar]
- Gunderson, L.H. Adaptive dancing: Interactions between social resilience and ecological crises. In Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2003; pp. 33–52. [Google Scholar]
- Westley, F. Governing design: The management of social systems and ecosystems management. In Barriers and Bridges to the Renewal of Ecosystems and Institutions; Columbia University Press: New York, NY, USA, 1995; pp. 391–427. [Google Scholar]
- Börjeson, L.; Höjer, M.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G. Scenario types and techniques: Towards a user’s guide. Futures 2006, 38, 723–739. [Google Scholar] [CrossRef]
- Chakraborty, A.; Kaza, N.; Knaap, G.-J.; Deal, B. Robust plans and contingent plans: Scenario planning for an uncertain world. J. Am. Plan. Assoc. 2011, 77, 251–266. [Google Scholar] [CrossRef]
- Schoemaker, P.J. Scenario planning: A tool for strategic thinking. Sloan Manage. Rev. 1995, 36, 25. [Google Scholar]
- Goldstein, J. Emergence as a construct: History and issues. Emergence 1999, 1, 49–72. [Google Scholar] [CrossRef]
- Romero, E.; Ruiz, M.C. Framework for applying a complex adaptive system approach to model the operation of eco-industrial parks. J. Ind. Ecol. 2013, 17, 731–741. [Google Scholar]
- Dougherty, D.; Dunne, D.D. Organizing ecologies of complex innovation. Organ. Sci. 2011, 22, 1214–1223. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Forrester, J.W. Urban dynamics. IMR; Ind. Manage. Rev. (pre-1986) 1970, 11, 67. [Google Scholar] [CrossRef]
- Whiteman, G.; Forbes, B.C.; Niemelä, J.; Chapin III, F.S. Bringing feedback and resilience of high-latitude ecosystems into the corporate boardroom. AMBIO J. Hum. Environ. 2004, 33, 371–376. [Google Scholar] [CrossRef]
- Loures, L.; Gama, J.; Nunes, J.R.; Lopez-Piñeiro, A. Assessing the sodium exchange capacity in rainfed and irrigated soils in the mediterranean basin using GIS. Sustainability 2017, 9, 405. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Systems of Humans and Nature; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Williams, A.; Kennedy, S.; Philipp, F.; Whiteman, G. Systems thinking: A review of sustainability management research. J. Clean. Prod. 2017, 148, 866–881. [Google Scholar] [CrossRef]
- Deal, B.; Kim, J.H.; Hewings, G.J.; Kim, Y.W. Complex urban systems integration: The leam experiences in coupling economic, land use, and transportation models in Chicago, IL. In Employment Location in Cities and Regions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 107–131. [Google Scholar]
- Hayek, U.W.; von Wirth, T.; Neuenschwander, N.; Grêt-Regamey, A. Organizing and facilitating geodesign processes: Integrating tools into collaborative design processes for urban transformation. Landsc. Urban Plan. 2016, 156, 59–70. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Jiang, L.; Young, M.H.; Hardee, K. Population, urbanization and the environment. World Watch 2008, 21, 34–39. [Google Scholar]
- Satterthwaite, D. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008, 20, 539–549. [Google Scholar] [CrossRef]
- Berkes, F.; Folke, C. Back to the future: Ecosystem dynamics and local knowledge. In Panarchy: Understanding Transformations in Human and Natural Systems; Gunderson, L.H., Holling, C.S., Eds.; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Voogt, J.A. Urban Heat Island; Scientific Research Publishing: Wuhan, China, 2000. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Li, J.-J.; Wang, X.-R.; Wang, X.-J.; Ma, W.-C.; Zhang, H. Remote sensing evaluation of urban heat island and its spatial pattern of the shanghai metropolitan area, china. Ecol. Complex. 2009, 6, 413–420. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Ludwig, D.; Brock, W.A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 1999, 9, 751–771. [Google Scholar] [CrossRef]
- Ervin, S. A System for Geodesign; Digital Landscape Architecture, Anhalt University of Applied Science: Köthen, Germany, 2011; pp. 145–154. [Google Scholar]
- Miller, H.J.; Witlox, F.; Tribby, C.P. Developing context-sensitive livability indicators for transportation planning: A measurement framework. J. Transp. Geogr. 2013, 26, 51–64. [Google Scholar] [CrossRef]
- Danahy, J.; Mitchell, J.; Feick, R.; Wrigh, R. Multi-Scale 3D Geovisualization of Urban Heat Island Data for Planning Dialogue in Toronto; Emerging Issues, Challenges and Opportunities in Urban E-Planning; University of Lisbon: Lisbon, Portugal, 2015; pp. 166–187. [Google Scholar]
- Trubka, R.; Glackin, S.; Lade, O.; Pettit, C. A web-based 3D visualisation and assessment system for urban precinct scenario modelling. ISPRS J. Photogramm. Remote Sens. 2016, 117, 175–186. [Google Scholar] [CrossRef]
- Burns, T.E.; Stalker, G.M. The Management of Innovation; Tavistock: London, UK, 1961. [Google Scholar]
- Von Bertalanffy, L. General system theory. N. Y. 1968, 41973, 40. [Google Scholar]
- Folke, C.; Berkes, F. Linking Social and Ecological Systems; Cambridge University Press: London, UK, 1998. [Google Scholar]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M. Complexity and Ecosystem Management: The Theory and Practice of Multi-Agent Systems; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Mörtberg, U.; Haas, J.; Zetterberg, A.; Franklin, J.P.; Jonsson, D.; Deal, B. Urban ecosystems and sustainable urban development—Analysing and assessing interacting systems in the Stockholm region. Urban Ecosyst. 2013, 16, 763–782. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Cervero, R. Efficient urbanisation: Economic performance and the shape of the metropolis. Urban Stud. 2001, 38, 1651–1671. [Google Scholar] [CrossRef]
- Waldheim, C. Industrial economy and agrarian urbanism. In The Horizontal Metropolis between Urbanism and Urbanization; Springer: Cham, Switzerland, 2018; pp. 47–53. [Google Scholar]
- Patten, D.T. The role of ecological wisdom in managing for sustainable interdependent urban and natural ecosystems. Landsc. Urban Plan. 2016, 155, 3–10. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J. Sustainable landscape architecture: Implications of the Chinese philosophy of “unity of man with nature” and beyond. Landsc. Ecol. 2009, 24, 1015–1026. [Google Scholar] [CrossRef]
- United States Environmental Protection. Learn about Sustainability. Available online: https://www.epa.gov/sustainability/learn-about-sustainability (accessed on 26 August 2018).
- Xiang, W.-N. Doing real and permanent good in landscape and urban planning: Ecological wisdom for urban sustainability. Landsc. Urban Plan. 2014, 121, 65–69. [Google Scholar] [CrossRef]
- Wheeler, S.M. Planning sustainable and livable cities. Sustain. Urban Dev. Read. 1998. [Google Scholar]
- Vaz, E. The future of landscapes and habitats: The regional science contribution to the understanding of geographical space. Habitat Int. 2016, 51, 70–78. [Google Scholar] [CrossRef]
- Borges, J.; Jankowski, P.; Davis, C.A., Jr. Crowdsourcing for geodesign: Opportunities and challenges for stakeholder input in urban planning. In Cartography-Maps Connecting the World; Springer: Cham, Switzerland, 2015; pp. 361–373. [Google Scholar]
- Janssen, R.; Dias, E. A pictorial approach to geodesign: A case study for the lower zambezi valley. Landsc. Urban Plan. 2017, 164, 144–148. [Google Scholar] [CrossRef]
- Abukhater, A.; Walker, D. Making smart growth smarter with geodesign. Dir. Mag. 2010, 19. [Google Scholar]
- Perkl, R.M. Geodesigning landscape linkages: Coupling GIS with wildlife corridor design in conservation planning. Landsc. Urban Plan. 2016, 156, 44–58. [Google Scholar] [CrossRef]
- Flaxman, M. Fundamental issues in geodesign. Dig. Landsc. Arch. 2009, 200, 181–182. [Google Scholar]
- Tulloch, D. Relinquishing a bit of control: Questions about the computer’s role in geodesign. Landsc. Urban Plan. 2016, 156, 17–19. [Google Scholar] [CrossRef]
- Batty, M. Defining Geodesign (= Gis + Design?); Sage Publications: London, UK, 2013. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Deal, B.; Larsen, L. Geodesign Processes and Ecological Systems Thinking in a Coupled Human-Environment Context: An Integrated Framework for Landscape Architecture. Sustainability 2018, 10, 3306. https://doi.org/10.3390/su10093306
Gu Y, Deal B, Larsen L. Geodesign Processes and Ecological Systems Thinking in a Coupled Human-Environment Context: An Integrated Framework for Landscape Architecture. Sustainability. 2018; 10(9):3306. https://doi.org/10.3390/su10093306
Chicago/Turabian StyleGu, Yexuan, Brian Deal, and Linda Larsen. 2018. "Geodesign Processes and Ecological Systems Thinking in a Coupled Human-Environment Context: An Integrated Framework for Landscape Architecture" Sustainability 10, no. 9: 3306. https://doi.org/10.3390/su10093306
APA StyleGu, Y., Deal, B., & Larsen, L. (2018). Geodesign Processes and Ecological Systems Thinking in a Coupled Human-Environment Context: An Integrated Framework for Landscape Architecture. Sustainability, 10(9), 3306. https://doi.org/10.3390/su10093306