A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware
2.2. Position Estimation
2.2.1. State Transition Identification
2.2.2. Acceleration to Position
2.2.3. Z-Axis Position Estimation
2.2.4. Final Position Output
3. Method
3.1. Procedure
3.2. Data Alignment
3.3. Data Processing
4. Results
5. Discussion
5.1. Comparison Study
5.2. Soniccup Latency
5.3. Future Developments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Soniccup Sonification
Appendix B. System Latency
Appendix B.1. Aligning Start of Movement
Movement Set | Mean | Standard Deviation |
---|---|---|
1 | 6.567 | 2.108 |
2 | 7.517 | 3.820 |
Appendix B.2. Algorithm Latency
- A total of ‘14 samples’ shown above the analogue voltage;
- A total of ‘8 samples’ shown above the State Transition Identification;
- A total of ‘1 sample’ shown below Kalman Filter 2.
References
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Jørgensen, H.S.; Raaschou, H.O.; Olsen, T.S. Recovery of upper extremity function in stroke patients: The Copenhagen stroke study. Arch. Phys. Med. Rehabil. 1994, 75, 394–398. [Google Scholar] [CrossRef] [PubMed]
- James Lind Alliance. Stroke Rehabilitation and Long-Term Care Top 10 Priorities. Available online: https://www.jla.nihr.ac.uk/priority-setting-partnerships/stroke/stroke-rehabilitation-and-long-term-care-top-10-priorities.htm (accessed on 20 July 2024).
- Pollock, A.; George, B.S.; Fenton, M.; Firkins, L. Top ten research priorities relating to life after stroke. Lancet Neurol. 2012, 11, 209. [Google Scholar] [CrossRef]
- Raglio, A.; Panigazzi, M.; Colombo, R.; Tramontano, M.; Iosa, M.; Mastrogiacomo, S.; Baiardi, P.; Molteni, D.; Baldissarro, E.; Imbriani, C.; et al. Hand rehabilitation with sonification techniques in the subacute stage of stroke. Sci. Rep. 2021, 11, 7237. [Google Scholar] [CrossRef]
- Peyre, I.; Roby-Brami, A.; Segalen, M.; Giron, A.; Caramiaux, B.; Marchand-Pauvert, V.; Pradat-Diehl, P.; Bevilacqua, F. Effect of sonification types in upper-limb movement: A quantitative and qualitative study in hemiparetic and healthy participants. J. Neuroeng. Rehabil. 2023, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Scholz, D.S.; Rohde, S.; Nikmaram, N.; Brückner, H.P.; Großbach, M.; Rollnik, J.D.; Altenmüller, E.O. Sonification of Arm Movements in Stroke Rehabilitation—A Novel Approach in Neurologic Music Therapy. Front. Neurol. 2016, 7, 106. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Diedrichsen, J.; Flanagan, J.R. Principles of sensorimotor learning. Nat. Rev. Neurosci. 2011, 12, 739–751. [Google Scholar] [CrossRef]
- Effenberg, A.O.; Fehse, U.; Schmitz, G.; Krueger, B.; Mechling, H. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments. Front. Neurosci. 2016, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.; Smith, L.; Vicinanza, D.; Stubbs, B.; Veronese, N.; Williams, G. The use of sonification for physiotherapy in human movement tasks: A scoping review. Sci. Sports 2020, 35, 119–129. [Google Scholar] [CrossRef]
- Nown, T.H.; Upadhyay, P.; Kerr, A.; Andonovic, I.; Tachtatzis, C.; Grealy, M.A. A Mapping Review of Real-Time Movement Sonification Systems for Movement Rehabilitation. IEEE Rev. Biomed. Eng. 2023, 16, 672–686. [Google Scholar] [CrossRef]
- Kruk, E.V.D.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659. [Google Scholar] [CrossRef]
- Schmitz, G.; Bergmann, J.; Effenberg, A.O.; Krewer, C.; Hwang, T.H.; Müller, F. Movement Sonification in Stroke Rehabilitation. Front. Neurol. 2018, 1, 389. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Bergmann, J. Pedestrian Dead Reckoning with Wearable Sensors: A Systematic Review. IEEE Sens. J. 2021, 21, 143–152. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Kumar, N.; Kumar, V. Errors in micro-electro-mechanical systems inertial measurement and a review on present practices of error modelling. Trans. Inst. Meas. Control. 2018, 40, 2843–2854. [Google Scholar] [CrossRef]
- Bai, L.; Pepper, M.G.; Wang, Z.; Mulvenna, M.D.; Bond, R.R.; Finlay, D.; Zheng, H. Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques. Sensors 2022, 23, 360. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.B.; Georgy, J. Kalman Filter. In Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 225–245. [Google Scholar] [CrossRef]
- Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Comotti, D.; Caldara, M.; Galizzi, M.; Locatelli, P.; Re, V. Inertial based hand position tracking for future applications in rehabilitation environments. In Proceedings of the 2015 6th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2015, Gallipoli, Italy, 18–19 June 2015; pp. 222–227. [Google Scholar] [CrossRef]
- Bai, L.; Pepper, M.G.; Yan, Y.; Spurgeon, S.K.; Sakel, M.; Phillips, M. Quantitative Assessment of Upper Limb Motion in Neurorehabilitation Utilizing Inertial Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 232–243. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult Norms for the Nine Hole Peg Test of Finger Dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- x-io Technologies. NGIMU. Available online: https://x-io.co.uk/ngimu/ (accessed on 2 August 2024).
- Madgwick, S.O.H. AHRS Algorithms and Calibration Solutions to Facilitate New Applications Using Low-Cost MEMS. Ph.D. Thesis, University of Bristol, Bristol, UK, 2014. [Google Scholar]
- Vicon Motion Systems. Nexus. Available online: https://www.vicon.com/software/nexus/ (accessed on 2 August 2024).
- Hermann, T.; Hunt, A.; Neuhoff, J.G. (Eds.) The Sonification Handbook; Logos Verlag: Berlin, Germany, 2011. [Google Scholar]
- Murphy, M.A.; Willén, C.; Sunnerhagen, K.S. Kinematic Variables Quantifying Upper-Extremity Performance After Stroke During Reaching and Drinking from a Glass. Neurorehabilit. Neural Repair 2011, 25, 71–80. [Google Scholar] [CrossRef]
- Schaffert, N.; Janzen, T.B.; Mattes, K.; Thaut, M.H. A Review on the Relationship between Sound and Movement in Sports and Rehabilitation. Front. Psychol. 2019, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, F.T.; Tillmann, B. Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press? PLoS ONE 2014, 9, e87176. [Google Scholar] [CrossRef] [PubMed]
- Cirstea, M.C.; Levin, M.F. Compensatory strategies for reaching in stroke. Brain 2000, 123, 940–953. [Google Scholar] [CrossRef]
- MIDI Association. Official MIDI Specifications. Available online: https://midi.org/specs (accessed on 6 July 2024).
- Murphy, M.A.; Murphy, S.; Persson, H.C.; Bergström, U.B.; Sunnerhagen, K.S. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People with and without Upper-extremity Impairments. J. Vis. Exp. 2018, 2018, 3–9. [Google Scholar] [CrossRef]
Movement Set | 1 | 2 | 3 |
---|---|---|---|
Mean (SD) Movement Duration (s) | 0.91 (0.08) | 2.94 (0.37) | 0.53 (0.04) |
Mean (SD) Peak Speed (mm/s) | 796.17 (68.01) | 283.69 (23.40) | 1705.35 (139.26) |
Mean (SD) of MSE of Normalized Data | 0.0034 (0.0019) | 0.1030 (0.0640) | 0.0057 (0.0058) |
Accumulation of MSE of Normalized Data | 0.1005 | 3.0893 | 0.1697 |
Mean (SD) of MSE () | 7413.21 (2838.81) | 32,994.65 (13,644.69) | 10,314.38 (5494.36) |
Accumulation of MSE () | 222,396.22 | 989,839.36 | 309,431.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nown, T.H.; Grealy, M.A.; Andonovic, I.; Kerr, A.; Tachtatzis, C. A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup. Sensors 2024, 24, 6279. https://doi.org/10.3390/s24196279
Nown TH, Grealy MA, Andonovic I, Kerr A, Tachtatzis C. A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup. Sensors. 2024; 24(19):6279. https://doi.org/10.3390/s24196279
Chicago/Turabian StyleNown, Thomas H., Madeleine A. Grealy, Ivan Andonovic, Andrew Kerr, and Christos Tachtatzis. 2024. "A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup" Sensors 24, no. 19: 6279. https://doi.org/10.3390/s24196279
APA StyleNown, T. H., Grealy, M. A., Andonovic, I., Kerr, A., & Tachtatzis, C. (2024). A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup. Sensors, 24(19), 6279. https://doi.org/10.3390/s24196279