Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Data Acquisition
3.2. Feature Extraction
3.3. Machine Learning Classifiers
4. Results
4.1. Correlation of Bilateral Masticatory Muscles
4.2. Frequency Analysis
4.3. Evaluation Metrics
4.3.1. Evaluation Metrics for Temporalis Muscle
4.3.2. Evaluation Metrics for Masseter Muscle
4.4. Comparison of Accuracies of Temporalis and Masseter Muscle
4.5. Confusion Matrix
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sousa, H.C.S.; de Deus Moura de Lima, M.; Neta, N.B.D.; Tobias, R.Q.; de Moura, M.S.; de Fátima Almeida de Deus Moura, L. Prevalence and associated factors to sleep bruxism in adolescents from Teresina, Piauí. Rev. Bras. Epidemiol. 2018, 21, e180002. [Google Scholar] [CrossRef] [PubMed]
- Beddis, H.; Pemberton, M.; Davies, S. Sleep bruxism: An overview for clinicians. Br. Dent. J. 2018, 225, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Walczyńska-Dragon, K.; Kurek-Górecka, A.; Niemczyk, W.; Nowak, Z.; Baron, S.; Olczyk, P.; Nitecka-Buchta, A.; Kempa, W.M. Cannabidiol Intervention for Muscular Tension, Pain, and Sleep Bruxism Intensity—A Ran-domized, Double-Blind Clinical Trial. J. Clin. Med. 2024, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Buzatu, R.; Luca, M.M.; Castiglione, L.; Sinescu, C. Sinescu, Efficacy and Safety of Botulinum Toxin in the Management of Tem-poromandibular Symptoms Associated with Sleep Bruxism: A Systematic Review. Dent. J. 2024, 12, 156. [Google Scholar] [CrossRef]
- Bulanda, S.; Ilczuk-Rypuła, D.; Nitecka-Buchta, A.; Nowak, Z.; Baron, S.; Postek-Stefańska, L. Sleep bruxism in children: Etiology, diagnosis and treatment—A literature review. Int. J. Environ. Res. Public Health 2021, 18, 9544. [Google Scholar] [CrossRef]
- Martynowicz, H.; Dymczyk, P.; Dominiak, M.; Kazubowska, K.; Skomro, R.; Poreba, R.; Gac, P.; Wojakowska, A.; Mazur, G.; Wieckiewicz, M. Evaluation of intensity of sleep Bruxism in arterial hypertension. J. Clin. Med. 2018, 7, 327. [Google Scholar] [CrossRef]
- Rupavatharam, S.; Gruteser, M. Towards In-Ear Inertial Jaw Clenching Detection. In Proceedings of the 1st International Workshop on Earable Computing, EarComp 2019, London, UK, 9–10 September 2019; Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 54–55. [Google Scholar] [CrossRef]
- Bondareva, E.; Hauksdottir, E.R.; Mascolo, C. Earables for Detection of Bruxism: A Feasibility Study. In UbiComp/ISWC 2021—Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, New York, NY, USA, 21–26 September 2021; Association for Computing Machinery, Inc.: New York, NY, USA, 2021; pp. 146–151. [Google Scholar] [CrossRef]
- Kaufmann, S.; Ardelt, G.; Malhotra, A.; Ryschka, M. In-Ear Pulse Wave Measurements: A Pilot Study. Biomed. Eng. Biomed. Tech. 2013, 58, 000010151520134128. [Google Scholar] [CrossRef]
- Park, J.-H.; Jang, D.-G.; Park, J.; Youm, S.-K. Wearable Sensing of in-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors 2015, 15, 23402–23417. [Google Scholar] [CrossRef]
- O’Hare, E.; Cogan, J.A.; Dillon, F.; Lowery, M.; O’Cearbhaill, E.D. An Intraoral Non-Occlusal MEMS Sensor for Bruxism Detection. IEEE Sens. J. 2022, 22, 153–161. [Google Scholar] [CrossRef]
- Saczuk, K.; Lapinska, B.; Wilmont, P.; Pawlak, L.; Lukomska-Szymanska, M. The bruxoff device as a screening method for sleep bruxism in dental practice. J. Clin. Med. 2019, 8, 930. [Google Scholar] [CrossRef]
- Kusche, R.; Klimach, P.; Malhotra, A.; Kaufmann, S.; Ryschka, M. An in-ear pulse wave velocity measurement system using heart sounds as time reference. In Current Directions in Biomedical Engineering; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany, 2015; pp. 366–370. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Wenande, B.S.; DeLong, R.; Anderson, G.C.; Douglas, W.H. A piezoelectric film transducer for dental occlusal analysis. Clin. Mater. 1992, 10, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Bai, Y.; Xie, X. Bite Force Transducers and Measurement Devices. Front. Bioeng. Biotechnol. 2021, 9, 665081. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Ikeda, T.; Clark, G. A piezoelectric film-based intrasplint detection method for bruxism. J. Prosthet. Dent. 2001, 86, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Su, Z.; Liu, L. Design and Implement Strategy of Wireless Bite Force Device. Bioengineering 2023, 10, 507. [Google Scholar] [CrossRef]
- Mcauliffe, P.; Kim, J.H.; Diamond, D.; Lau, K.T.; O’Connell, B.C. A sleep bruxism detection system based on sensors in a splint—Pilot clinical data. J. Oral. Rehabil. 2015, 42, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Macedo, C.R.; Silva, A.B.; Machado, M.A.; Saconato, H.; Prado, G.F. Occlusal Splints for Treating Sleep Bruxism (Tooth Grinding); John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Fiorin, R.; De de Franco, A.P.G.D.O.; De Souza, M.A.; Fontenele, D.M.; Jones, I.L.G.; Kalinowski, H.J.; Abe, I. Case Study for Monitoring the Rhythmic Masticatory Muscle Activity During Sleep Bruxism Episodes by Using Fiber Bragg Gratings. J. Lightwave Technol. 2019, 37, 4823–4829. [Google Scholar] [CrossRef]
- Jirakittayakorn, N.; Wongsawat, Y. An EMG instrument designed for bruxism detection on masseter muscle. In Proceedings of the 7th 2014 Biomedical Engineering International Conference, Fukuoka, Japan, 26–28 November 2014; pp. 1–5. Available online: https://api.semanticscholar.org/CorpusID:35889348 (accessed on 30 May 2024).
- Peruzzi, G.; Galli, A.; Pozzebon, A. A Novel Methodology to Remotely and Early Diagnose Sleep Bruxism by Leveraging on Audio Signals and Embedded Machine Learning. In Proceedings of the 2022 IEEE International Symposium on Measurements & Networking (M&N), Padua, Italy, 18–20 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Sonmezocak, T.; Kurt, S. Detection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis. Elektron. Elektrotechnika 2021, 27, 11–21. [Google Scholar] [CrossRef]
- Heyat, M.B.B.; Lai, D.; Akhtar, F.; Hayat, M.A.B.; Azad, S.; Azad, S.; Bruxism, S.A. Bruxism Detection Using Single-Channel C4-A1 on Human Sleep S2 Stage Recording. In Intelligent Data Analysis: From Data Gathering to Data Comprehension; Wiley: Hoboken, NJ, USA, 2020; pp. 347–367. [Google Scholar]
- Pearson, N.; Naylor, P.J.; Ashe, M.C.; Fernandez, M.; Yoong, S.L.; Wolfenden, L. Guidance for conducting feasibility and pilot studies for implementation trials. Pilot Feasibility Stud. 2020, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Verma, A.K.; Guragain, B.; Xiong, X.; Liu, C. Classification of bruxism based on time-frequency and nonlinear features of single channel EEG. BMC Oral Health 2024, 24, 81. [Google Scholar] [CrossRef]
- Castroflorio, T.; Mesin, L.; Tartaglia, G.M.; Sforza, C.; Farina, D. Use of electromyographic and electrocardiographic signals to detect sleep bruxism episodes in a natural environment. IEEE J. Biomed. Health Inform. 2013, 17, 994–1001. [Google Scholar] [CrossRef]
- Maoddi, P.; Bianco, E.; Letizia, M.; Pollis, M.; Manfredini, D.; Maddalone, M. Correlation between a Force-Sensing Oral Appliance and Electromyography in the Detection of Tooth Contact Bruxism Events. J. Clin. Med. 2022, 11, 5532. [Google Scholar] [CrossRef]
- Muscles of Mastication—Physiopedia. Available online: https://www.physio-pedia.com/Muscles_of_Mastication (accessed on 21 May 2024).
- Heyat, B.B.; Akhtar, F.; Khan, A.; Noor, A.; Benjdira, B.; Qamar, Y.; Abbas, S.J.; Lai, D. A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals. Appl. Sci. 2020, 10, 7410. [Google Scholar] [CrossRef]
- B. S. Inc. “MP36-MP45”. Available online: https://www.biopac.com/wp-content/uploads/MP_Hardware_Guide.pdf (accessed on 22 February 2024).
- Salah, D.M.; Fahmy, E.M.; Zakaria, H.M.; Tabl, M.M.I.; Hakim, A.A.E.-M.A.E.; Elsherif, A.A. Correlation Between Bruxism and Facial Movement Coordination. NeuroQuantology 2022, 20, 4956–4965. [Google Scholar] [CrossRef]
- Prasad, C.; Kullayamma, I. Frequency, and Wavelet Transform Methods. In Artificial Intelligence and Sustainable Computing; Pandit, M., Gaur, M.K., Kumar, S., Eds.; Springer Nature: Singapore, 2023; pp. 1–13. [Google Scholar]
Anatomical Position | Machine Learning Model | Temporalis | Masseter | ||
---|---|---|---|---|---|
Left | Right | Left | Right | ||
Left Lateral Recumbent Position | Decision Tree | 0.8472 | 0.8056 | 0.75 | 0.7917 |
Random Forest | 0.8611 | 0.8611 | 0.8194 | 0.8333 | |
Naïve Bayes | 0.75 | 0.7917 | 0.7222 | 0.75 | |
Logistic Regression | 0.8194 | 0.8472 | 0.8333 | 0.8194 | |
Support Vector Machines | 0.8333 | 0.8611 | 0.8333 | 0.8333 | |
Right Lateral Recumbent Position | Decision Tree | 0.875 | 0.8472 | 0.8472 | 0.8333 |
Random Forest | 0.8889 | 0.9028 | 0.875 | 0.9167 | |
Naïve Bayes | 0.875 | 0.8889 | 0.8333 | 0.875 | |
Logistic Regression | 0.9028 | 0.9167 | 0.8194 | 0.9167 | |
Support Vector Machines | 0.8889 | 0.9167 | 0.8472 | 0.9028 |
Anatomical Position | Machine Learning Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
Supine Position | Decision Tree | 0.84 | 0.85 | 0.83 | 0.84 |
Random Forest | 0.87 | 0.84 | 0.94 | 0.88 | |
Logistic Regression | 0.80 | 0.84 | 0.75 | 0.79 | |
Naïve Bayes | 0.76 | 0.84 | 0.66 | 0.74 | |
Support Vector Machines | 0.84 | 0.83 | 0.87 | 0.85 | |
Left Lateral Recumbent Position | Decision Tree | 0.89 | 0.88 | 0.89 | 0.89 |
Random Forest | 0.93 | 0.90 | 0.96 | 0.93 | |
Logistic Regression | 0.87 | 0.89 | 0.86 | 0.87 | |
Naïve Bayes | 0.65 | 0.83 | 0.39 | 0.53 | |
Support Vector Machines | 0.92 | 0.90 | 0.94 | 0.92 | |
Right Lateral Recumbent Position | Decision Tree | 0.85 | 0.83 | 0.87 | 0.85 |
Random Forest | 0.89 | 0.86 | 0.93 | 0.89 | |
Logistic Regression | 0.84 | 0.84 | 0.83 | 0.84 | |
Naïve Bayes | 0.72 | 0.83 | 0.53 | 0.65 | |
Support Vector Machines | 0.89 | 0.86 | 0.91 | 0.88 |
Anatomical Position | Left and Right Temporalis | Left and Right Masseter |
---|---|---|
Left Lateral Recumbent Position | 0.9378 | 0.9555 |
Right Lateral Recumbent Position | 0.9583 | 0.9262 |
Anatomical Position | Machine Learning Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
Supine Position | Decision Tree | 0.83 | 0.81 | 0.87 | 0.84 |
Random Forest | 0.86 | 0.83 | 0.92 | 0.87 | |
Logistic Regression | 0.76 | 0.76 | 0.77 | 0.77 | |
Naïve Bayes | 0.62 | 0.70 | 0.47 | 0.56 | |
Support Vector Machines | 0.77 | 0.75 | 0.83 | 0.79 | |
Left Lateral Recumbent Position | Decision Tree | 0.83 | 0.84 | 0.83 | 0.84 |
Random Forest | 0.88 | 0.86 | 0.92 | 0.89 | |
Logistic Regression | 0.65 | 0.85 | 0.69 | 0.77 | |
Naïve Bayes | 0.78 | 0.87 | 0.37 | 0.52 | |
Support Vector Machines | 0.86 | 0.85 | 0.89 | 0.87 | |
Right Lateral Recumbent Position | Decision Tree | 0.85 | 0.84 | 0.85 | 0.85 |
Random Forest | 0.90 | 0.85 | 0.96 | 0.90 | |
Logistic Regression | 0.76 | 0.77 | 0.71 | 0.74 | |
Naïve Bayes | 0.48 | 0.48 | 0.99 | 0.64 | |
Support Vector Machines | 0.88 | 0.84 | 0.94 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, J.Z.; Fatima, N.; Mohy Ud Din, Z.; Khan, M.; Kim, W.Y.; Rehman, M.M. Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning. Sensors 2024, 24, 5426. https://doi.org/10.3390/s24165426
Gul JZ, Fatima N, Mohy Ud Din Z, Khan M, Kim WY, Rehman MM. Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning. Sensors. 2024; 24(16):5426. https://doi.org/10.3390/s24165426
Chicago/Turabian StyleGul, Jahan Zeb, Noor Fatima, Zia Mohy Ud Din, Maryam Khan, Woo Young Kim, and Muhammad Muqeet Rehman. 2024. "Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning" Sensors 24, no. 16: 5426. https://doi.org/10.3390/s24165426
APA StyleGul, J. Z., Fatima, N., Mohy Ud Din, Z., Khan, M., Kim, W. Y., & Rehman, M. M. (2024). Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning. Sensors, 24(16), 5426. https://doi.org/10.3390/s24165426