Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm
Abstract
:1. Introduction
1.1. Existing Methods
1.2. Contributions
1.3. Section Summaries
2. Overview
2.1. Method Flow
2.2. Spatiotemporal Grid Map Construction
2.3. Variable Time Step Representation
2.4. Known Condition Construction
3. Initial Spatiotemporal Trajectory Calculation
3.1. Spatiotemporal Node Expansion and Feasibility Determination
3.2. Algorithm Numerical Design
3.3. Spatiotemporal Variable-Step-Size A* Algorithm Flow
4. Spatiotemporal Trajectory Instantiation
4.1. B-Spline-Based Instantiation
4.2. Constraint-Based Optimization
5. Simulation and Discussion
5.1. Small-Scale Scenario Simulation
5.2. Large-Scale Scenario Simulation
5.3. Algorithm Performance Analysis
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, D.; Perez, J.; Milanes, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 2015, 17, 1135–1145. [Google Scholar] [CrossRef]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. Motion Oper. Plan. Robot. Syst. Backgr. Pract. Approaches 2015, 29, 3–27. [Google Scholar]
- Wang, M.Q.; Wang, Z.P.; Zhang, L. Research on local path planning method of intelligent vehicles based on collision risk assessment. J. Mech. Eng. 2021, 57, 10–14. [Google Scholar]
- Han, C.; Li, B. Mobile robot path planning based on improved A* algorithm. In Proceedings of the 2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 8–10 December 2023; Volume 11, pp. 672–676. [Google Scholar]
- Wang, W.; Goh, W.B. Multi-robot path planning with the spatio-temporal A* algorithm and its variants. In Proceedings of the Advanced Agent Technology: AAMAS 2011 Workshops, AMPLE, AOSE, ARMS, DOCM 3 AS, ITMAS, Taipei, Taiwan, 2–6 May 2011; Revised Selected Papers 10; Springer: Berlin/Heidelberg, Germany, 2012; pp. 313–329. [Google Scholar]
- Fan, H.; Zhu, F.; Liu, C.; Zhang, L.; Zhuang, L.; Li, D.; Zhu, W.; Hu, J.; Li, H.; Kong, Q. Baidu apollo em motion planner. arXiv Prepr. 2018, arXiv:1807.08048. [Google Scholar]
- Wen, L.; Liu, Y.; Li, H. CL-MAPF: Multi-agent path finding for car-like robots with kinematic and spatiotemporal constraints. Robot. Auton. Syst. 2022, 150, 103997. [Google Scholar] [CrossRef]
- Lim, W.; Lee, S.; Sunwoo, M.; Jo, K. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans. Intell. Transp. Syst. 2018, 19, 613–626. [Google Scholar] [CrossRef]
- Zhang, T.; Song, W.; Fu, M.; Yang, Y.; Tian, X.; Wang, M. A unified framework integrating decision making and trajectory planning based on spatio-temporal voxels for highway autonomous driving. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10365–10379. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, L.; Chen, J.; Shen, S. Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor. IEEE Robot. Autom. Lett. 2019, 4, 2997–3004. [Google Scholar] [CrossRef]
- Luo, J.; Yuan, M.; Pu, H.; Ma, J.; Chen, C.; Wu, F. Trajectory Planning for Autonomous Driving Based on Spatio-Temporal Corridor. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 3921–3926. [Google Scholar]
- Li, J.; Xie, X.; Lin, Q.; He, J.; Dolan, J.M. Motion planning by search in derivative space and convex optimization with enlarged solution space. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 13500–13507. [Google Scholar]
- Deolasee, S.; Lin, Q.; Li, J.; Dolan, J.M. Spatio-temporal motion planning for autonomous vehicles with trapezoidal prism corridors and bézier curves. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023; pp. 3207–3214. [Google Scholar]
- Bai, C.; Yan, P.; Pan, W.; Guo, J. Learning-based multi-robot formation control with obstacle avoidance. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11811–11822. [Google Scholar] [CrossRef]
- Reijnen, R.; Zhang, Y.; Nuijten, W.; Senaras, C.; Goldak-Altgassen, M. Combining deep reinforcement learning with search heuristics for solving multi-agent path finding in segment-based layouts. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020; pp. 2647–2654. [Google Scholar]
- Sinkar, M.; Izhan, M.; Nimkar, S.; Kurhade, S. Multi-agent path finding using dynamic distributed deep learning model. In Proceedings of the 2021 International Conference on Communication Information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; pp. 1–6. [Google Scholar]
- Li, B.; Kong, Q.; Zhang, Y.; Shao, Z.; Wang, Y.; Peng, X.; Yan, D. On-road trajectory planning with spatio-temporal RRT* and always-feasible quadratic program. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 942–947. [Google Scholar]
- Hills, J.; Zhong, Y. Cellular neural network-based thermal modelling for real-time robotic path planning. Int. J. Agil. Syst. Manag. 2014, 7, 261–281. [Google Scholar] [CrossRef]
- Zhong, Y.; Shirinzadeh, B.; Yuan, X. Optimal robot path planning with cellular neural network. Int. J. Intell. Mechatron. Robot. 2011, 1, 20–39. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, S.; Qu, B.; Gao, X.; Zhong, Y. Crossover recombination-based global-best brain storm optimization algorithm for uav path planning. Proc. Rom. Acad. Ser. A-Math. Phys. Tech. Sci. Inf. Sci. 2022, 23, 207–216. [Google Scholar]
- Si, Q.; Li, C. Indoor robot path planning using an improved whale optimization algorithm. Sensors 2023, 23, 3988. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, W.; Chi, X.; Jiang, D.; Yi, Y.; Lu, Y. A Novel AGV Path Planning Approach for Narrow Channels Based on the Bi-RRT Algorithm with a Failure Rate Threshold. Sensors 2023, 23, 7547. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yu, W.; Li, G.; Qin, G.; Luo, Y. Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Sensors 2023, 23, 6082. [Google Scholar] [CrossRef] [PubMed]
- Jie, H.; Zhihao, Z.; Ruinan, C.; Ruipeng, C.; Haoyan, L.; Qi, Z.; Hui, C. Spatio-temporal Joint Planning Method of Intelligent Vehicles Based on Improved Hybrid A. Automot. Eng. 2023, 45, 1123–1133. [Google Scholar]
- Li, B.; Zhang, Y. Fast trajectory planning in Cartesian rather than Frenet frame: A precise solution for autonomous driving in complex urban scenarios. IFAC-PapersOnLine 2020, 53, 17065–17070. [Google Scholar] [CrossRef]
- Qi, X.; Huang, J.; Cao, J. Path planning for unmanned vehicle based on improved A* algorithm. J. Comput. Appl. 2020, 40, 2021. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors 2018, 18, 3170. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y. ASL-DWA: An improved A-star algorithm for indoor cleaning robots. IEEE Access 2022, 10, 99498–99515. [Google Scholar] [CrossRef]
- Brancalião, L.; Gonçalves, J.; Conde, M.; Costa, P. Systematic mapping literature review of mobile robotics competitions. Sensors 2022, 22, 2160. [Google Scholar] [CrossRef] [PubMed]
- De Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, M.; Song, W.; Yang, Y.; Wang, M. Trajectory planning based on spatio-temporal map with collision avoidance guaranteed by safety strip. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1030–1043. [Google Scholar] [CrossRef]
- Wang, W.; Pottmann, H.; Liu, Y. Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. (ToG) 2006, 25, 214–238. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 2019, 4, 3529–3536. [Google Scholar] [CrossRef]
- Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842. [Google Scholar]
- Li, J.; Ran, M.; Xie, L. Efficient Trajectory Planning for Multiple Non-holonomic Mobile Robots via Prioritized Trajectory Optimization. IEEE Robot. Autom. Lett. 2021, 6, 405–412. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Lu, Y.; Liu, H.; Gong, J.; Chen, H. A Hierarchical Multi-Vehicle Coordinated Motion Planning Method based on Interactive Spatio-Temporal Corridors. IEEE Trans. Intell. Veh. 2024, 9, 2675–2687. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Length of robot Lv/m | 5 |
Width of robot Wv/m | 3 |
Intelligent robot speed range v/(m s−1) | [0, 2] |
Total scene length L/m | 26 |
Total scene width W/m | 22 |
Parameter | Existing Robot 0 | Existing Robot 1 | Existing Robot 2 | Existing Robot 3 | Incremental Robot 4 |
---|---|---|---|---|---|
Start position (X0,Y0)/m | (3,3) | (2,20) | (20,2) | (24,2) | (1,1) |
Target position (Xg,Yg)/m | (20,20) | (20,11) | (1,11) | (2,20) | (24,11) |
Target speed Vs/(m s−1) | 0.5 | 1 | 2 | 1 | 1 |
Departure time Ts/s | 0 | 0 | 5 | 10 | 15 |
Group | STP-STVS-A* before Optimization (m) | STP-STVS-A* after Optimization (m) | CL-CBS (m) |
---|---|---|---|
Robot 0 | 28.48 | 27.08 | 41.33 |
Robot 1 | 23.65 | 22.76 | 25.87 |
Robot 2 | 23.65 | 22.71 | 25.85 |
Robot 3 | 35.31 | 34.02 | 40.73 |
Robot 4 | 28.48 | 27.65 | 32.96 |
Total | 124.28 | 115.58 | 166.58 |
Parameter | Value |
---|---|
Total scene length L/m | 100 |
Total scene width W/m | 120 |
Parameter | Existing Robot 0 | Existing Robot 1 | Existing Robot 2 | Existing Robot 3 | Existing Robot 4 | Existing Robot 5 | Existing Robot 6 | Incremental Robot 7 |
---|---|---|---|---|---|---|---|---|
Start position (X0,Y0)/m | (30,10) | (90,10) | (100,10) | (80,90) | (90,60) | (90,40) | (30,80) | (80,20) |
Target position (Xg,Yg)/m | (30,20) | (90,20) | (90,80) | (40,40) | (70,90) | (50,90) | (50,10) | (20,90) |
Target speed Vs/(m-s-1) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Departure time Ts/s | 0 | 0 | 0 | 0 | 0 | 5 | 10 | 20 |
Group | STP-STVS-A* before Optimization (m) | STP-STVS-A* after Optimization (m) | ETPMR (m) |
---|---|---|---|
Robot 0 | 10.00 | 10.00 | 10.00 |
Robot 1 | 10.00 | 10.00 | 10.19 |
Robot 2 | 88.28 | 83.73 | 127.82 |
Robot 3 | 66.56 | 65.45 | 70.33 |
Robot 4 | 44.14 | 40.28 | 55.42 |
Robot 5 | 72.42 | 68.70 | 75.70 |
Robot 6 | 84.14 | 81.66 | 91.06 |
Robot 7 | 100.71 | 96.53 | 112.57 |
Total | 476.25 | 456.35 | 553.09 |
Project | STP-STVS-A* | CL-CBS | ETPMR |
---|---|---|---|
Path smoothness | Path smoothest | Path zigzagging | Path smooth |
Result length | Shortest, closest to optimal path | Longer | Shorter |
Speed smoothness | Smooth speed change, small difference from the target speed | Dramatic speed change, large difference from the set speed | Smoother speed changes |
Target speed configurability | Different target speeds can be set | Only has one set speed | The speed varies within different groups |
Incremental robot iterability | Incremental robots can be iterated starting at different times | Robots start at the same time and cannot be iterated | Cannot be iterated |
Algorithm computation time | Longe | Shortest | Short |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Wen, X.; Hu, J.; Chen, H.; Xia, C.; Zhang, H. Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm. Sensors 2024, 24, 3639. https://doi.org/10.3390/s24113639
Hu H, Wen X, Hu J, Chen H, Xia C, Zhang H. Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm. Sensors. 2024; 24(11):3639. https://doi.org/10.3390/s24113639
Chicago/Turabian StyleHu, Haonan, Xin Wen, Jiazun Hu, Haiyu Chen, Chenyu Xia, and Hui Zhang. 2024. "Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm" Sensors 24, no. 11: 3639. https://doi.org/10.3390/s24113639
APA StyleHu, H., Wen, X., Hu, J., Chen, H., Xia, C., & Zhang, H. (2024). Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm. Sensors, 24(11), 3639. https://doi.org/10.3390/s24113639