Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks
Abstract
:1. Introduction
2. Related Work
3. Proposed Meta-Transfer Hyperspectral Image Few-Shot Classification
3.1. Proposed MFSC Framework
3.2. Cross-Domain Few-Shot Learning and Training Strategy
3.3. Spatial–Spectral Feature Extraction Module Based on ResDenseNet Network
3.3.1. Mapping Layer Module
3.3.2. ResDenseNet Feature Extractor
3.3.3. Multilayer Perceptron Module
4. Experiments
4.1. Experimental Dataset
4.2. Experimental Settings
4.3. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Cao, W.; Wei, Y. Spatial perception correntropy matrix for hyperspectral image classification. Appl. Sci. 2022, 12, 6797. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Xu, M.; Yu, S. A survey: Deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 2021, 448, 179–204. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y. Estimating soil salinity under various moisture conditions: An experimental study. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J.M. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans. Image Process. 2018, 27, 4118–4130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Wu, Z.; Plaza, A. Spatial discontinuity-weighted sparse unmixing of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5767–5779. [Google Scholar] [CrossRef]
- Tong, Q.X.; Zhang, B.; Zhang, L.F. Current progress of hyperspectral remote sensing in China. J. Remote Sens. 2016, 20, 689–707. [Google Scholar]
- Jia, S.; Hu, J.; Zhu, J.; Jia, X.; Li, Q. Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2399–2413. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Liu, Y.; Xie, W. A spatial-spectral SIFT for hyperspectral image matching and classification. Pattern Recognit. Lett. 2019, 127, 18–26. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal clustering framework for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef]
- Wang, Q.; He, X.; Li, X. Locality and structure regularized low rank representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 911–923. [Google Scholar] [CrossRef]
- Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Kuo, B.C.; Huang, C.S.; Hung, C.C.; Liu, Y.L.; Chen, I.L. Spatial information based support vector machine for hyperspectral image classification. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Honolulu, HI, USA, 25–30 July 2010; pp. 832–835. [Google Scholar]
- Ren, Y.; Zhang, Y.; Li, L. A spectral-spatial hyperspectral data classification approach using random forest with label constraints. In Proceedings of the 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, Canada, 8–9 May 2014; pp. 344–347. [Google Scholar]
- Wang, J.X.; Chen, S.B.; Ding, C.H.; Tang, J.; Luo, B. RanPaste: Paste consistency and pseudo label for semi-supervised remote sensing image semantic segmentation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Thompson, S.; Teixeira-Dias, F.; Paulino, M.; Hamilton, A. Ballistic response of armour plates using generative adversarial networks. Def. Technol. 2022, 18, 1513–1522. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y. Dual-path siamese CNN for hyperspectral image classification with limited training samples. IEEE Geosci. Remote Sens. Lett. 2020, 18, 518–522. [Google Scholar] [CrossRef]
- Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, J.; Chen, J.; Guo, S.; Sun, L.; Zhou, C.; Wang, Y. Hyperspectral image classification with imbalanced data based on semi-supervised learning. Appl. Sci. 2022, 12, 3943. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, X.; Zhang, X.; Ma, J.; Liu, F.; Jia, X.; Jiao, L. Semi-supervised multiscale dynamic graph convolution network for hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Mallick, P.K.; Bhoi, A.K.; Ijaz, M.F.; Shafi, J.; Choi, J. Hyperspectral image classification: Potentials, challenges, and future directions. Comput. Intell. Neurosci. 2022, 2022, 3854635. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, K.; Du, P.; Pan, C.; Ding, J. A unified multiscale learning framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508319. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Wang, X.; Fan, Y. Multiscale densely connected attention network for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1617–1628. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dhillon, G.S.; Chaudhari, P.; Ravichandran, A.; Soatto, S. A baseline for few-shot image classification. arXiv 2019, arXiv:1909.02729. [Google Scholar]
- Mathivanan, P.; Maran, P. Color image encryption based on novel kolam scrambling and modified 2D logistic cascade map (2D LCM). J. Supercomput. 2024, 80, 2164–2195. [Google Scholar] [CrossRef]
- Devabathini, N.J.; Mathivanan, P. Sign Language Recognition Through Video Frame Feature Extraction using Transfer Learning and Neural Networks. In Proceedings of the 2023 International Conference on Next Generation Electronics (NEleX), Vellore, Tamil Nadu, India, 14–16 December 2023; pp. 1–6. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29. [Google Scholar]
- Ren, M.; Triantafillou, E.; Ravi, S.; Snell, J.; Swersky, K.; Tenenbaum, J.B.; Larochelle, H.; Zemel, R.S. Meta-learning for semi-supervised few-shot classification. arXiv 2018, arXiv:1803.00676. [Google Scholar]
- Munkhdalai, T.; Yu, H. Meta networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2554–2563. [Google Scholar]
- Sun, Q.; Liu, Y.; Chua, T.S.; Schiele, B. Meta-transfer learning for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 403–412. [Google Scholar]
- Yu, M.; Guo, X.; Yi, J.; Chang, S.; Potdar, S.; Cheng, Y.; Tesauro, G.; Wang, H.; Zhou, B. Diverse few-shot text classification with multiple metrics. arXiv 2018, arXiv:1805.07513. [Google Scholar]
- Liu, Y.; Sun, Q.; Liu, A.A.; Su, Y.; Schiele, B.; Chua, T.S. LCC: Learning to customize and combine neural networks for few-shot learning. arXiv 2019, arXiv:1904.08479. [Google Scholar]
- Liu, B.; Yu, X.; Yu, A.; Zhang, P.; Wan, G.; Wang, R. Deep few-shot learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2290–2304. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Song, R.; Li, Y.; Du, Q. SCFormer: Spectral Coordinate Transformer for Cross-Domain Few-Shot Hyperspectral Image Classification. IEEE Trans. Image Process. 2024, 33, 840–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Z.; Wang, D.; Wang, Z.J. Cross-Domain Few-Shot Contrastive Learning for Hyperspectral Images Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5514505. [Google Scholar] [CrossRef]
- Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Indian Pines Dataset. Available online: https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 17 November 2023).
- Yokoya, N.; Iwasaki, A. Airborne Hyperspectral Data over Chikusei; SAL-2016-05-27; Technical Report; Space Application Laboratory, The University of Tokyo: Tokyo, Japan, 2016. [Google Scholar]
- Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yu, A.; Gao, K.; Wang, Y.; Yu, X.; Zhang, P. Multiscale nested U-Net for small sample classification of hyperspectral images. J. Appl. Remote Sens. 2022, 16, 016506. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.; Tu, B.; Zhang, Y. Convolutional Transformer-Based Few-Shot Learning for Cross-Domain Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1335–1349. [Google Scholar] [CrossRef]
- Gao, K.; Liu, B.; Yu, X.; Qin, J.; Zhang, P.; Tan, X. Deep relation network for hyperspectral image few-shot classification. Remote Sens. 2020, 12, 923. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Zhang, M.; Wang, S.; Tao, R.; Du, Q. Graph information aggregation cross-domain few-shot learning for hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1912–1925. [Google Scholar] [CrossRef]
- Yang, L.; Li, L.; Zhang, Z.; Zhou, X.; Zhou, E.; Liu, Y. Dpgn: Distribution propagation graph network for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13390–13399. [Google Scholar]
- Li, Z.; Liu, M.; Chen, Y.; Xu, Y.; Li, W.; Du, Q. Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5501618. [Google Scholar] [CrossRef]
Methods | OA (%) | AA (%) | Kappa × 100 | |
---|---|---|---|---|
Non-few-shot learning | SVM | 45.85 | 59.24 | 39.68 |
3D-CNN | 54.76 | 63.93 | 48.72 | |
SSRN | 61.36 | 59.75 | 56.91 | |
Few-shot learning | DFSL + NN | 59.65 | 72.24 | 54.55 |
DFSL + SVM | 61.69 | 73.05 | 56.78 | |
RN-FSC | 58.17 | 69.90 | 52.52 | |
Gai-CFSL | 63.77 | 74.98 | 59.20 | |
DCFSL | 66.81 | 77.89 | 62.64 | |
SCFormer-R | 65.01 | 74.65 | 60.20 | |
SCFormer-S | 64.95 | 75.59 | 60.31 | |
MFSC | 71.49 | 81.19 | 67.81 | |
MFSC (Mish + BN) Ours | 72.60 | 81.62 | 69.16 |
Methods | OA (%) | AA (%) | Kappa × 100 | |
---|---|---|---|---|
Non-few-shot learning | SVM | 64.12 | 68.18 | 55.59 |
3D-CNN | 65.74 | 73.72 | 57.37 | |
SSRN | 76.26 | 79.51 | 70.56 | |
Few-shot learning | DFSL + NN | 77.75 | 72.24 | 54.55 |
DFSL + SVM | 79.63 | 76.41 | 73.05 | |
RN-FSC | 80.18 | 77.12 | 73.73 | |
Gai-CFSL | 83.12 | 82.35 | 77.96 | |
DCFSL | 83.65 | 83.77 | 78.70 | |
SCFormer-R | 82.31 | 82.25 | 76.55 | |
SCFormer-S | 83.83 | 82.47 | 78.47 | |
MFSC | 85.09 | 86.69 | 80.78 | |
MFSC (Mish + BN) Ours | 86.02 | 88.21 | 81.93 |
Methods | OA (%) | AA (%) | Kappa × 100 | |
---|---|---|---|---|
Non-few-shot learning | SVM | 80.71 | 87.58 | 78.61 |
3D-CNN | 84.20 | 89.56 | 82.46 | |
SSRN | 86.39 | 93.24 | 84.95 | |
Few-shot learning | DFSL + NN | 87.05 | 91.01 | 85.63 |
DFSL + SVM | 86.95 | 90.08 | 85.51 | |
RN-FSC | 84.11 | 88.83 | 82.38 | |
Gai-CFSL | 87.83 | 92.41 | 86.48 | |
DCFSL | 89.34 | 94.04 | 88.17 | |
SCFormer-R | 89.30 | 93.89 | 88.10 | |
SCFormer-S | 88.82 | 94.13 | 87.57 | |
MFSC | 90.54 | 94.49 | 89.47 | |
MFSC (Mish + BN) Ours | 90.97 | 95.36 | 89.98 |
Class | SVM | 3DCNN | SSRN | DFSL + NN | Gai-CFSL | RN-FSC | DCFSL | SCFormer-R | SCFormer-S | Ours |
---|---|---|---|---|---|---|---|---|---|---|
Shadow | 99.13 | 35.57 | 98.08 | 96.92 | 79.62 | 99.19 | 98.66 | 99.08 | 95.46 | 98.52 ± 0.32 |
Bricks | 68.17 | 57.27 | 85.34 | 58.13 | 88.59 | 63.48 | 66.73 | 74.21 | 78.15 | 89.22 ± 0.64 |
Bitumen | 40.62 | 87.64 | 60.07 | 70.62 | 62.06 | 70.04 | 81.18 | 86.97 | 81.55 | 87.28 ± 1.47 |
Bare soil | 37.12 | 63.40 | 53.56 | 71.23 | 90.66 | 57.99 | 77.32 | 57.50 | 62.96 | 87.14 ± 2.45 |
Metal Sheet | 95.44 | 90.77 | 98.34 | 100 | 98.54 | 99.43 | 99.49 | 98.90 | 99.01 | 100 ± 0.0 |
Trees | 60.22 | 77.31 | 78.02 | 89.99 | 74.65 | 92.15 | 93.45 | 86.54 | 80.92 | 94.53 ± 1.59 |
Gravel | 39.98 | 68.91 | 55.23 | 57.47 | 77.74 | 49.81 | 67.46 | 69.26 | 71.32 | 66.19 ± 0.24 |
Meadows | 83.91 | 63.05 | 95.13 | 84.63 | 71.49 | 93.44 | 87.74 | 90.92 | 92.04 | 84.54 ± 1.13 |
Asphalt | 88.98 | 59.82 | 91.84 | 69.19 | 97.77 | 68.55 | 82.20 | 76.92 | 80.78 | 89.42 ± 2.78 |
Class | SVM | Res-3D-CNN | SS-CNN | Gai-CFSL | DPGN | RN-FSC | DCFSL | SCFormer-R | SCFormer-S | Ours |
---|---|---|---|---|---|---|---|---|---|---|
Brocoli_green_weeds_1 | 85.60 | 39.47 | 93.02 | 99.59 | 87.72 | 96.45 | 99.55 | 98.96 | 98.22 | 99.91 ± 0.20 |
Brocoli_green_weeds_2 | 98.54 | 74.02 | 93.51 | 98.81 | 99.49 | 99.15 | 99.71 | 99.87 | 99.95 | 99.92 ± 0.14 |
Fallow | 65.38 | 49.33 | 84.31 | 90.18 | 79.76 | 85.85 | 93.68 | 93.54 | 98.62 | 98.55 ± 1.23 |
Fallow_rough_plow | 95.82 | 88.71 | 86.43 | 98.23 | 98.34 | 98.49 | 99.45 | 98.69 | 96.26 | 99.89 ± 0.06 |
Fallow_smooth | 95.83 | 77.50 | 90.91 | 86.75 | 80.13 | 82.67 | 90.39 | 92.86 | 96.67 | 93.48 ± 1.39 |
Stubble | 99.92 | 97.52 | 99.55 | 99.21 | 99.92 | 97.29 | 99.27 | 99.91 | 99.95 | 99.47 ± 0.60 |
Celery | 95.29 | 61.53 | 97.54 | 98.58 | 99.86 | 99.39 | 99.04 | 98.64 | 99.11 | 99.94 ± 0.04 |
Grapes_untrained | 57.00 | 68.93 | 73.52 | 74.23 | 50.84 | 71.59 | 72.61 | 76.63 | 72.00 | 78.77 ± 2.28 |
Soil_vinyard_develop | 90.64 | 92.83 | 93.81 | 97.74 | 89.03 | 88.16 | 99.74 | 99.58 | 99.56 | 99.99 ± 0.01 |
Corn_sensced_green_weeds | 85.87 | 69.33 | 77.21 | 80.54 | 81.24 | 69.72 | 84.51 | 81.52 | 86.72 | 84.10 ± 2.31 |
Lettuce_romaince_4wk | 38.32 | 59.07 | 42.37 | 96.43 | 89.46 | 89.29 | 98.17 | 97.84 | 96.59 | 99.15 ± 0.71 |
Lettuce_romaince_5wk | 87.56 | 70.59 | 95.85 | 99.13 | 99.17 | 94.03 | 99.04 | 99.56 | 99.65 | 99.97 ± 0.04 |
Lettuce_romaince_6wk | 88.66 | 75.38 | 99.23 | 98.61 | 99.56 | 99.45 | 98.97 | 99.64 | 99.42 | 99.12 ± 0.69 |
Lettuce_romaince_7wk | 87.87 | 89.12 | 92.98 | 97.95 | 98.87 | 96.58 | 97.77 | 98.40 | 98.19 | 99.04 ± 0.73 |
Vinyard_untrained | 33.18 | 47.62 | 50.37 | 73.85 | 59.75 | 69.30 | 74.12 | 73.90 | 72.65 | 80.40 ± 4.08 |
Vinyard_vertical_trellis | 81.64 | 88.90 | 80.54 | 88.75 | 77.69 | 81.86 | 90.62 | 91.34 | 92.52 | 87.26 ± 4.4 |
Class | SVM | 3D-CNN | DFSL | Gai-CFSL | DPGN | RN-FSC | DCFSL | SCFormer-R | SCFormer-S | Ours |
---|---|---|---|---|---|---|---|---|---|---|
Alfalfa | 41.30 | 92.68 | 97.44 | 91.60 | 95.12 | 96.65 | 95.61 | 87.80 | 93.41 | 100.00 ± 0.0 |
Corn-notill | 42.86 | 38.44 | 38.34 | 50.46 | 47.15 | 45.95 | 50.44 | 46.13 | 50.25 | 55.02 ± 5.06 |
Corn-mintill | 39.04 | 44.85 | 43.35 | 44.88 | 27.03 | 41.25 | 48.42 | 45.68 | 51.84 | 66.91 ± 4.99 |
Corn | 59.49 | 36.64 | 68.45 | 81.61 | 56.47 | 59.06 | 79.57 | 64.01 | 61.77 | 97.24 ± 2.16 |
Grass-pasture | 59.63 | 71.13 | 70.21 | 70.76 | 39.75 | 65.90 | 73.89 | 73.87 | 77.85 | 84.77 ± 2.57 |
Grass-Tree | 84.79 | 72.69 | 76.38 | 84.25 | 61.38 | 69.51 | 88.26 | 87.54 | 90.41 | 84.50 ± 8.58 |
Grass-pasture-moved | 92.86 | 100 | 99.77 | 97.10 | 100 | 99.65 | 99.57 | 96.96 | 99.13 | 99.13 ± 1.74 |
Hay-windrowed | 90.79 | 83.93 | 75.67 | 91.12 | 92.39 | 76.91 | 88.44 | 86.15 | 90 | 78.73 ± 3.46 |
Oats | 90.00 | 33.33 | 99.00 | 99.26 | 100 | 100 | 100 | 98.67 | 98 | 100.00 ± 0.0 |
Soybean-notill | 34.57 | 64.84 | 47.90 | 62.68 | 57.91 | 26.05 | 61.71 | 58.42 | 56.06 | 72.37 ± 1.47 |
Soybean-mintill | 0.00 | 58.04 | 57.80 | 66.54 | 41.18 | 65.36 | 57.82 | 64.48 | 57.87 | 66.47 ± 4.85 |
Soybean-clean | 15.01 | 23.64 | 38.13 | 42.06 | 47.96 | 26.31 | 40.34 | 34.46 | 34.97 | 45.99 ± 6.59 |
Wheat | 89.76 | 91.00 | 98.04 | 97.11 | 89.00 | 99.28 | 99.25 | 98.20 | 95.60 | 100.00 ± 0.0 |
Woods | 90.91 | 53..97 | 83.08 | 87.10 | 78.65 | 75.66 | 87.26 | 85.35 | 86.90 | 97.17 ± 0.56 |
Building_Grass-Trees_drives | 17.36 | 56.96 | 62.86 | 68.74 | 46.72 | 69.90 | 68.71 | 66.85 | 65.62 | 67.19 ± 7.36 |
Stone-Stell_Towers | 86.02 | 100 | 99.94 | 97.47 | 98.86 | 99.88 | 98.52 | 99.89 | 99.77 | 100.00 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, X.; Xia, K.; Ma, Y.; Yuan, G. Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks. Sensors 2024, 24, 2664. https://doi.org/10.3390/s24092664
Zhou H, Wang X, Xia K, Ma Y, Yuan G. Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks. Sensors. 2024; 24(9):2664. https://doi.org/10.3390/s24092664
Chicago/Turabian StyleZhou, Hao, Xianwang Wang, Kunming Xia, Yi Ma, and Guowu Yuan. 2024. "Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks" Sensors 24, no. 9: 2664. https://doi.org/10.3390/s24092664
APA StyleZhou, H., Wang, X., Xia, K., Ma, Y., & Yuan, G. (2024). Transfer Learning-Based Hyperspectral Image Classification Using Residual Dense Connection Networks. Sensors, 24(9), 2664. https://doi.org/10.3390/s24092664