Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm
Abstract
:1. Introduction
- Introduce vision as an additional sensing modality for odor source localization. For vision sensing, we trained a deep-learning-based computer vision model to detect odor sources from emitted visible plumes;
- Develop a multimodal Vision and Olfaction Fusion Navigation algorithm with Obstacle-Avoid Navigation capabilities for OSL tasks;
- Compare the search performance of Olfaction-Only and Vision-Only Navigation algorithms with the proposed Vision and Olfaction Fusion Navigation algorithm in a real-world search environment with obstacles and turbulent airflow setups.
2. Related Works
3. Materials and Methods
3.1. Overview of the Proposed OSL Algorithm
3.2. Crosswind Maneuver Behavior
3.3. Obstacle-Avoid Navigation Behavior
Algorithm 1 ‘Obstacle-Avoid Navigation’ Behavior |
1: Set robot linear velocity as m/s 2: Set robot angular velocity as rad/s 3: if then 4: rad/s 5: else 6: m/s and rad/s 7: if then 8: if then 9: rad/s 10: else 11: rad/s 12: end if 13: else if then 14: if then 15: rad/s 16: else 17: rad/s 18: end if 19: else 20: m/s 21: end if 22: end if |
- It does not rely on prior knowledge of the global map nor on location of the obstacles or the destination;
- Compared to most deep-learning-based navigation planners, it requires less inference time.
3.4. Vision-Based Navigation
3.5. Olfaction-Based Navigation
4. Experiment Results
4.1. Search Area
4.2. Mobile Robot Configuration
4.3. Experiment Design
4.4. Source Declaration
4.5. Sample Trials
4.6. Repeated Experimental Trials
5. Discussion and Future Research Directions
- Integration of vision and olfaction in odor source localization tasks: Our proposed navigation algorithm integrates both vision and olfaction in odor source localization tasks. Compared to traditional Olfaction-Only Navigation algorithms, including bio-inspired methods [12], engineering-based methods [13,45], and machine-learning-based methods [14,15], the addition of vision advances the boundaries of current OSL navigation algorithms;
- Odor source localization in complex environments with obstacles: While most traditional olfactory-based navigation algorithms do not consider obstacles in the search environments (e.g., [12]), our proposed method can guide the robot to find the odor source in complex environments with obstacles. Thanks to the proposed hierarchical control algorithm, the robot can dynamically coordinate among Vision-Based Navigation, Olfaction-Based Navigation, and obstacle avoidance behaviors;
- Real-world experiments and results: Many prior works (e.g., [15]) only validated their algorithms in simulation environment without validating them in real-world environments. However, simulation environments cannot always represent real-world scenarios due to the gap between the simulation and real-world environments. In this work, we implemented the proposed odor source localization algorithm in real-world settings, showed it in real-world settings, and validated its effectiveness in real-world environments with obstacles and turbulent airflow.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
DL | Deep Learning |
DNN | Deep Neural Networks |
LDS | Laser Distance Sensor |
OSL | Odor Source Localization |
PC | Personal Computer |
ROS | Robot Operating System |
SLAM | Simultaneous Localization and Mapping |
VLA | Vision–Language–Action Model |
References
- Purves, D.; Augustine, G.; Fitzpatrick, D.; Katz, L.; LaMantia, A.; McNamara, J.; Williams, S. The Organization of the Olfactory System. In Neuroscience; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 337–354. [Google Scholar]
- Sarafoleanu, C.; Mella, C.; Georgescu, M.; Perederco, C. The importance of the olfactory sense in the human behavior and evolution. J. Med. Life 2009, 2, 196. [Google Scholar] [PubMed]
- Ibarra-Soria, X.; Levitin, M.O.; Saraiva, L.R.; Logan, D.W. The olfactory transcriptomes of mice. PLoS Genet. 2014, 10, e1004593. [Google Scholar] [CrossRef] [PubMed]
- Kowadlo, G.; Russell, R.A. Robot odor localization: A taxonomy and survey. Int. J. Robot. Res. 2008, 27, 869–894. [Google Scholar] [CrossRef]
- Wang, L.; Pang, S.; Noyela, M.; Adkins, K.; Sun, L.; El-Sayed, M. Vision and Olfactory-Based Wildfire Monitoring with Uncrewed Aircraft Systems. In Proceedings of the 2023 20th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 25–28 June 2023; IEEE: New York, NY, USA, 2023; pp. 716–723. [Google Scholar]
- Fu, Z.; Chen, Y.; Ding, Y.; He, D. Pollution source localization based on multi-UAV cooperative communication. IEEE Access 2019, 7, 29304–29312. [Google Scholar] [CrossRef]
- Burgués, J.; Hernández, V.; Lilienthal, A.J.; Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 2019, 19, 478. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.A. Robotic location of underground chemical sources. Robotica 2004, 22, 109–115. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Underground odor source localization based on a variation of lower organism search behavior. IEEE Sens. J. 2017, 17, 5963–5970. [Google Scholar] [CrossRef]
- Wang, L.; Pang, S.; Xu, G. 3-dimensional hydrothermal vent localization based on chemical plume tracing. In Proceedings of the Global Oceans 2020: Singapore—US Gulf Coast, Biloxi, MI, USA, 5–30 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Cardé, R.T.; Mafra-Neto, A. Mechanisms of flight of male moths to pheromone. In Insect Pheromone Research; Springer: Berlin/Heidelberg, Germany, 1997; pp. 275–290. [Google Scholar]
- López, L.L.; Vouloutsi, V.; Chimeno, A.E.; Marcos, E.; i Badia, S.B.; Mathews, Z.; Verschure, P.F.; Ziyatdinov, A.; i Lluna, A.P. Moth-like chemo-source localization and classification on an indoor autonomous robot. In On Biomimetics; IntechOpen: Vienna, Austria, 2011. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y.; Du, C.; Zhang, Q.; Wang, W. A novel odor source localization system based on particle filtering and information entropy. Robot. Auton. Syst. 2020, 132, 103619. [Google Scholar] [CrossRef]
- Kim, H.; Park, M.; Kim, C.W.; Shin, D. Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation. Comput. Chem. Eng. 2019, 125, 476–489. [Google Scholar] [CrossRef]
- Hu, H.; Song, S.; Chen, C.P. Plume Tracing via Model-Free Reinforcement Learning Method. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2515–2527. [Google Scholar] [CrossRef]
- Lockery, S.R. The computational worm: Spatial orientation and its neuronal basis in C. elegans. Curr. Opin. Neurobiol. 2011, 21, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Potier, S.; Duriez, O.; Célérier, A.; Liegeois, J.L.; Bonadonna, F. Sight or smell: Which senses do scavenging raptors use to find food? Anim. Cogn. 2019, 22, 49–59. [Google Scholar] [CrossRef]
- Frye, M.A.; Duistermars, B.J. Visually mediated odor tracking during flight in Drosophila. J. Vis. Exp. 2009, e1110. [Google Scholar] [CrossRef]
- Van Breugel, F.; Riffell, J.; Fairhall, A.; Dickinson, M.H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 2015, 25, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Yv, F.L.; Hai, X.; Wang, Z.; Yan, A.; Liu, B.; Bi, Y. Integration of visual and olfactory cues in host plant identification by the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). PLoS ONE 2015, 10, e0142752. [Google Scholar]
- Cardé, R.T.; Willis, M.A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 2008, 34, 854–866. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Jezierski, T.; Bolhuis, J.E.; Amo, L.; Rosell, F.; Oostindjer, M.; Christensen, J.W.; McKeegan, D.; Wells, D.L.; Hepper, P. Olfaction: An overlooked sensory modality in applied ethology and animal welfare. Front. Vet. Sci. 2015, 2, 69. [Google Scholar] [CrossRef]
- Murlis, J.; Elkinton, J.S.; Carde, R.T. Odor plumes and how insects use them. Annu. Rev. Entomol. 1992, 37, 505–532. [Google Scholar] [CrossRef]
- Kuang, S.; Zhang, T. Smelling directions: Olfaction modulates ambiguous visual motion perception. Sci. Rep. 2014, 4, 5796. [Google Scholar] [CrossRef]
- Jing, T.; Meng, Q.H.; Ishida, H. Recent progress and trend of robot odor source localization. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 938–953. [Google Scholar] [CrossRef]
- Berg, H.C. Feature article site index motile behavior of bacteria. Phys. Today 2001, 9, 25. [Google Scholar]
- Radvansky, B.A.; Dombeck, D.A. An olfactory virtual reality system for mice. Nat. Commun. 2018, 9, 839. [Google Scholar] [CrossRef]
- Sandini, G.; Lucarini, G.; Varoli, M. Gradient driven self-organizing systems. In Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93), Tokyo, Japan, 26–30 July 1993; IEEE: New York, NY, USA, 1993; Volume 1, pp. 429–432. [Google Scholar]
- Grasso, F.W.; Consi, T.R.; Mountain, D.C.; Atema, J. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges. Robot. Auton. Syst. 2000, 30, 115–131. [Google Scholar] [CrossRef]
- Russell, R.A.; Bab-Hadiashar, A.; Shepherd, R.L.; Wallace, G.G. A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 2003, 45, 83–97. [Google Scholar] [CrossRef]
- Lilienthal, A.; Duckett, T. Experimental analysis of gas-sensitive Braitenberg vehicles. Adv. Robot. 2004, 18, 817–834. [Google Scholar] [CrossRef]
- Ishida, H.; Nakayama, G.; Nakamoto, T.; Moriizumi, T. Controlling a gas/odor plume-tracking robot based on transient responses of gas sensors. IEEE Sens. J. 2005, 5, 537–545. [Google Scholar] [CrossRef]
- Vickers, N.J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 2000, 198, 203–212. [Google Scholar] [CrossRef]
- Nevitt, G.A. Olfactory foraging by Antarctic procellariiform seabirds: Life at high Reynolds numbers. Biol. Bull. 2000, 198, 245–253. [Google Scholar] [CrossRef]
- Wallraff, H.G. Avian olfactory navigation: Its empirical foundation and conceptual state. Anim. Behav. 2004, 67, 189–204. [Google Scholar] [CrossRef]
- Shigaki, S.; Sakurai, T.; Ando, N.; Kurabayashi, D.; Kanzaki, R. Time-varying moth-inspired algorithm for chemical plume tracing in turbulent environment. IEEE Robot. Autom. Lett. 2017, 3, 76–83. [Google Scholar] [CrossRef]
- Shigaki, S.; Shiota, Y.; Kurabayashi, D.; Kanzaki, R. Modeling of the Adaptive Chemical Plume Tracing Algorithm of an Insect Using Fuzzy Inference. IEEE Trans. Fuzzy Syst. 2019, 28, 72–84. [Google Scholar] [CrossRef]
- Rahbar, F.; Marjovi, A.; Kibleur, P.; Martinoli, A. A 3-D bio-inspired odor source localization and its validation in realistic environmental conditions. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: New York, NY, USA, 2017; pp. 3983–3989. [Google Scholar]
- Shigaki, S.; Yoshimura, Y.; Kurabayashi, D.; Hosoda, K. Palm-sized quadcopter for three-dimensional chemical plume tracking. IEEE Trans. Instrum. Meas. 2022, 71, 7505912. [Google Scholar] [CrossRef]
- Vergassola, M.; Villermaux, E.; Shraiman, B.I. ‘Infotaxis’ as a strategy for searching without gradients. Nature 2007, 445, 406. [Google Scholar] [CrossRef] [PubMed]
- Jakuba, M.V. Stochastic Mapping for Chemical Plume Source Localization with Application to Autonomous Hydrothermal Vent Discovery. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar] [CrossRef]
- Rahbar, F.; Marjovi, A.; Martinoli, A. An algorithm for odor source localization based on source term estimation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: New York, NY, USA, 2019; pp. 973–979. [Google Scholar]
- Hutchinson, M.; Liu, C.; Chen, W.H. Information-based search for an atmospheric release using a mobile robot: Algorithm and experiments. IEEE Trans. Control. Syst. Technol. 2018, 27, 2388–2402. [Google Scholar] [CrossRef]
- Jiu, H.; Chen, Y.; Deng, W.; Pang, S. Underwater chemical plume tracing based on partially observable Markov decision process. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419831874. [Google Scholar]
- Luong, D.N.; Kurabayashi, D. Odor Source Localization in Obstacle Regions Using Switching Planning Algorithms with a Switching Framework. Sensors 2023, 23, 1140. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Zhu, F. Reactive planning for olfactory-based mobile robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; IEEE: New York, NY, USA, 2009; pp. 4375–4380. [Google Scholar]
- Wang, L.; Pang, S. Chemical Plume Tracing using an AUV based on POMDP Source Mapping and A-star Path Planning. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–7. [Google Scholar]
- Wang, L.; Pang, S. An Implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for Odor Source Localization. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29 October 2020; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Baker, K.L.; Dickinson, M.; Findley, T.M.; Gire, D.H.; Louis, M.; Suver, M.P.; Verhagen, J.V.; Nagel, K.I.; Smear, M.C. Algorithms for olfactory search across species. J. Neurosci. 2018, 38, 9383–9389. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Papale, A.E.; Hengenius, J.; Patel, K.; Ermentrout, B.; Urban, N.N. Mouse navigation strategies for odor source localization. Front. Neurosci. 2020, 14, 218. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Farrell, J.A.; Pang, S.; Arrieta, R.M. Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Trans. Robot. 2006, 22, 292–307. [Google Scholar] [CrossRef]
- Al Jabari, H.; Alobahji, A.; Baran, E.A. A New Artificial Potential Field Based Global Path Planning Algorithm for Mobile Robot Navigation. In Proceedings of the 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), Padova, Italy, 18–20 February 2022; IEEE: New York, NY, USA, 2022; pp. 444–449. [Google Scholar]
- Xiang, D.; Lin, H.; Ouyang, J.; Huang, D. Combined improved A* and greedy algorithm for path planning of multi-objective mobile robot. Sci. Rep. 2022, 12, 13273. [Google Scholar] [CrossRef]
- Luo, M.; Hou, X.; Yang, J. Surface optimal path planning using an extended Dijkstra algorithm. IEEE Access 2020, 8, 147827–147838. [Google Scholar] [CrossRef]
- Kahn, G.; Abbeel, P.; Levine, S. Badgr: An autonomous self-supervised learning-based navigation system. IEEE Robot. Autom. Lett. 2021, 6, 1312–1319. [Google Scholar] [CrossRef]
- Ciaglia, F.; Zuppichini, F.S.; Guerrie, P.; McQuade, M.; Solawetz, J. Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark. arXiv 2022, arXiv:2211.13523. [Google Scholar]
- Farrell, J.A.; Pang, S.; Li, W. Chemical plume tracing via an autonomous underwater vehicle. IEEE J. Ocean. Eng. 2005, 30, 428–442. [Google Scholar] [CrossRef]
- Feng, Q.; Cai, H.; Chen, Z.; Yang, Y.; Lu, J.; Li, F.; Xu, J.; Li, X. Experimental study on a comprehensive particle swarm optimization method for locating contaminant sources in dynamic indoor environments with mechanical ventilation. Energy Build. 2019, 196, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Patle, B.K.; Babu L, G.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Wang, L.; Pang, S.; Li, J. Olfactory-Based Navigation via Model-Based Reinforcement Learning and Fuzzy Inference Methods. IEEE Trans. Fuzzy Syst. 2021, 29, 3014–3027. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.; Pang, S. Learn to Trace Odors: Robotic Odor Source Localization via Deep Learning Methods with Real-world Experiments. In Proceedings of the SoutheastCon 2023, Orlando, FL, USA, 1–16 April 2023; IEEE: New York, NY, USA, 2023; pp. 524–531. [Google Scholar]
- Driess, D.; Xia, F.; Sajjadi, M.S.; Lynch, C.; Chowdhery, A.; Ichter, B.; Wahid, A.; Tompson, J.; Vuong, Q.; Yu, T.; et al. Palm-e: An embodied multimodal language model. arXiv 2023, arXiv:2303.03378. [Google Scholar]
- Brohan, A.; Brown, N.; Carbajal, J.; Chebotar, Y.; Chen, X.; Choromanski, K.; Ding, T.; Driess, D.; Dubey, A.; Finn, C.; et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. arXiv 2023, arXiv:2307.15818. [Google Scholar]
Source | Sensor Type | Module Name | Specification |
---|---|---|---|
Built-in | Camera | Raspberry Pi Camera v2 | Video Capture: 1080p30, 720p60 and VGA90. |
Laser Distance Sensor | LDS-02 | Detection Range: 360-degree. Distance Range: 160∼8000 mm. | |
Added | Anemometer | WindSonic, Gill Inc. | Speed: 0–75 m/s. Wind direction: 0–360 degrees. |
Chemical Sensor | MQ3 alcohol detector | Concentration: 25–500 ppm. |
Robot Initial Position (x, y), Orientation (z, w) | Olfaction-Only Navigation Algorithm (s) | Vision-Only Navigation Algorithm (s) | Vision and Olfaction Fusion Navigation Algorithm (s) | |
---|---|---|---|---|
Laminar Airflow Env. | (−2.9, 1.5), (−0.6, 1.0) | 63.1 | - | 63.9 |
(−3.1, 0.5), (0.0, 35.0) | 71.3 | 149.3 | 69.9 | |
(−2.6, −0.4), (0.7, 0.7) | 74.3 | - | 67.5 | |
(−2.0, 0.6), (1.0, −0.1) | 73.8 | - | 75.7 | |
(−1.8, 0.7), (0.0, 0.1) | 59.1 | - | 61.1 | |
Turbulent Airflow Env. | (−2.9, 1.5), (−0.6, 1.0) | - | - | 64.0 |
(−3.1, 0.5), (0.0, 35.0) | - | - | 113.1 | |
(−2.6, −0.4), (0.7, 0.7) | 196.4 | - | 130.7 | |
(−2.0, 0.6), (1.0, −0.1) | - | 102.8 | 131.9 | |
(−1.8, 0.7), (0.0, 0.1) | 72.3 | - | 68.5 |
Navigation Algorithm | Airflow Environment | Success Rate | Avg. Search Time (s) | Avg. Travelled Dist. (m) |
---|---|---|---|---|
Olfaction-Only | Laminar | 5/5 | 68.3 | 6.1 |
Turbulent | 2/5 | 134.4 | 9.7 | |
Vision-Only | Laminar | 1/5 | 149.3 | 11.7 |
Turbulent | 1/5 | 102.8 | 13.7 | |
Vision and Olfaction Fusion | Laminar | 5/5 | 67.6 | 6.2 |
Turbulent | 5/5 | 101.6 | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.; Wang, L.; Mahmud, K.R. Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm. Sensors 2024, 24, 2309. https://doi.org/10.3390/s24072309
Hassan S, Wang L, Mahmud KR. Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm. Sensors. 2024; 24(7):2309. https://doi.org/10.3390/s24072309
Chicago/Turabian StyleHassan, Sunzid, Lingxiao Wang, and Khan Raqib Mahmud. 2024. "Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm" Sensors 24, no. 7: 2309. https://doi.org/10.3390/s24072309
APA StyleHassan, S., Wang, L., & Mahmud, K. R. (2024). Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm. Sensors, 24(7), 2309. https://doi.org/10.3390/s24072309