Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Template Development
2.3. Experimental Setup
2.4. Analysis
3. Results and Discussions
3.1. Deposition Rate and Uniformity
3.2. Mechanical Strength
3.3. Structural and Morphological Analysis
3.4. Implications for 3D MEAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Normalized Height Distributions of Electrodeposited Micro-Pillars for Each Experiment
Appendix B. Design, Layout, and Fabrication of MEA Substrates
References
- Choi, J.S.; Lee, H.J.; Rajaraman, S.; Kim, D.H. Recent Advances in Three-Dimensional Microelectrode Array Technologies for in Vitro and in Vivo Cardiac and Neuronal Interfaces. Biosens. Bioelectron. 2021, 171, 112687. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.; Fischer, N.O.; Enright, H.A. Probing Function in 3D Neuronal Cultures: A Survey of 3D Multielectrode Array Advances. Curr. Opin. Pharmacol. 2021, 60, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.L.; Livi, P.; Lewandowska, M.K.; Fiscella, M.; Roscic, B.; Hierlemann, A. The Potential of Microelectrode Arrays and Microelectronics for Biomedical Research and Diagnostics. Anal. Bioanal. Chem. 2011, 399, 2313–2329. [Google Scholar] [CrossRef] [PubMed]
- Decker, D.; Hempelmann, R.; Natter, H.; Pirrung, M.; Rabe, H.; Schäfer, K.H.; Saumer, M. 3D Nanostructured Multielectrode Arrays: Fabrication, Electrochemical Characterization, and Evaluation of Cell–Electrode Adhesion. Adv. Mater. Technol. 2019, 4, 1800436. [Google Scholar] [CrossRef]
- Saleh, M.S.; Ritchie, S.M.; Nicholas, M.A.; Gordon, H.L.; Hu, C.; Jahan, S.; Yuan, B.; Bezbaruah, R.; Reddy, J.W.; Ahmed, Z.; et al. CMU Array: A 3D Nanoprinted, Fully Customizable High-Density Microelectrode Array Platform. Sci. Adv. 2022, 8, eabj4853. [Google Scholar] [CrossRef]
- Berényi, A.; Somogyvári, Z.; Nagy, A.J.; Roux, L.; Long, J.D.; Fujisawa, S.; Stark, E.; Leonardo, A.; Harris, T.D.; Buzsáki, G. Large-Scale, High-Density (up to 512 Channels) Recording of Local Circuits in Behaving Animals. J. Neurophysiol. 2014, 111, 1132–1149. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.K.; Jones, K.E.; Huber, R.J.; Horch, K.W.; Normann, R.A. A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array. IEEE Trans. Biomed. Eng. 1991, 38, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, S.B.; Peixoto, A.C.; Silva, A.F.; Correia, J.H. Fabrication and Mechanical Characterization of Long and Different Penetrating Length Neural Microelectrode Arrays. J. Micromechanics Microengineering 2015, 25, 055014. [Google Scholar] [CrossRef]
- Soscia, D.A.; Lam, D.; Tooker, A.C.; Enright, H.A.; Triplett, M.; Karande, P.; Peters, S.K.G.; Sales, A.P.; Wheeler, E.K.; Fischer, N.O. A Flexible 3-Dimensional Microelectrode Array for: In Vitro Brain Models. Lab Chip 2020, 20, 901–911. [Google Scholar] [CrossRef]
- Hartmann, J.; Lauria, I.; Bendt, F.; Rütten, S.; Koch, K.; Blaeser, A.; Fritsche, E. Alginate-Laminin Hydrogel Supports Long-Term Neuronal Activity in 3D Human Induced Pluripotent Stem Cell-Derived Neuronal Networks. Adv. Mater. Interfaces 2023, 10, 2200580. [Google Scholar] [CrossRef]
- Bartsch, H.; Baca, M.; Fernekorn, U.; Müller, J.; Schober, A.; Witte, H. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture. Biosensors 2018, 8, 37. [Google Scholar] [CrossRef]
- Lorenzelli, L.; Spanu, A.; Pedrotti, S.; Tedesco, M.; Martinoia, S. Three-Dimensional Microelectrodes Array Based on Vertically Stacked Beads for Mapping Neurons’ Electrophysiological Activity. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, TRANSDUCERS 2019 EUROSENSORS XXXIII, Berlin, Germany, 23–27 June 2019; pp. 987–990. [Google Scholar] [CrossRef]
- Wang, P.; Wu, E.G.; Uluşan, H.; Phillips, A.J.; Hays, M.R.; Kling, A.; Zhao, E.T.; Madugula, S.; Vilkhu, R.S.; Vasireddy, P.K.; et al. Direct-Print Three-Dimensional Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces. bioRxiv 2023. [Google Scholar] [CrossRef]
- Acarón Ledesma, H.; Li, X.; Carvalho-de-Souza, J.L.; Wei, W.; Bezanilla, F.; Tian, B. An Atlas of Nano-Enabled Neural Interfaces. Nat. Nanotechnol. 2019, 14, 645–657. [Google Scholar] [CrossRef]
- Ghane-Motlagh, B.; Sawan, M. A Review of Microelectrode Array Technologies: Design and Implementation Challenges. In Proceedings of the 2013 2nd International Conference on Advances in Biomedical Engineering, Tripoli, Lebanon, 11–13 September 2013. [Google Scholar] [CrossRef]
- Zeck, G.; Jetter, F.; Channappa, L.; Bertotti, G.; Thewes, R. Electrical Imaging: Investigating Cellular Function at High Resolution. Adv. Biosyst. 2017, 1, 1700107. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.W. Multielectrode Arrays. Scholarpedia 2011, 6, 5749. [Google Scholar] [CrossRef]
- Spanu, A.; Colistra, N.; Farisello, P.; Friz, A.; Arellano, N.; Rettner, C.T.; Bonfiglio, A.; Bozano, L.; Martinoia, S. A Three-Dimensional Micro-Electrode Array for in-Vitro Neuronal Interfacing. J. Neural Eng. 2020, 17, 036033. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Lorenzelli, L.; Giacomozzi, F. A Novel Additive Manufacturing Approach towards Fabrication of Multi-Level Three-Dimensional Microelectrode Array for Electrophysiological Investigations. In Proceedings of the 2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC), Gothenburg, Sweden, 13–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Teixeira, H.; Dias, C.; Aguiar, P.; Ventura, J. Gold-Mushroom Microelectrode Arrays and the Quest for Intracellular-Like Recordings: Perspectives and Outlooks. Adv. Mater. Technol. 2021, 6, 2000770. [Google Scholar] [CrossRef]
- Steins, H.; Mierzejewski, M.; Brauns, L.; Stumpf, A.; Kohler, A.; Heusel, G.; Corna, A.; Herrmann, T.; Jones, P.D.; Zeck, G.; et al. A Flexible Protruding Microelectrode Array for Neural Interfacing in Bioelectronic Medicine. Microsyst. Nanoeng. 2022, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Di Lisa, D.; Giacomozzi, F.; Cian, A.; Giubertoni, D.; Martinoia, S.; Lorenzelli, L. Development of Multi-Depth Probing 3D Microelectrode Array to Record Electrophysiological Activity within Neural Cultures. J. Micromechanics Microengineering 2023, 33, 115002. [Google Scholar] [CrossRef]
- Mescola, A.; Canale, C.; Prato, M.; Diaspro, A.; Berdondini, L.; MacCione, A.; Dante, S. Specific Neuron Placement on Gold and Silicon Nitride-Patterned Substrates through a Two-Step Functionalization Method. Langmuir 2016, 32, 6319–6327. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W. Ultrasonic Vibration-Assisted (UV-A) Manufacturing Processes: State of the Art and Future Perspectives. J. Manuf. Process. 2020, 51, 174–190. [Google Scholar] [CrossRef]
- Wei, C.; Shixing, W.; Libo, Z.; Jinhui, P.; Gengwei, Z. The Application of Ultrasound Technology in the Field of the Precious Metal. Russ. J. Non-Ferrous Met. 2015, 56, 417–427. [Google Scholar] [CrossRef]
- Hyde, M.E.; Compton, R.G. How Ultrasound Influences the Electrodeposition of Metals. J. Electroanal. Chem. 2002, 531, 19–24. [Google Scholar] [CrossRef]
- Gadkari, S.A.; Nayfeh, T.H. Micro Fabrication Using Electro Deposition and Ultrasonic Acoustic Liquid Manipulation. Int. J. Adv. Manuf. Technol. 2008, 39, 107–117. [Google Scholar] [CrossRef]
- Viventi, J.; Kim, D.H.; Vigeland, L.; Frechette, E.S.; Blanco, J.A.; Kim, Y.S.; Avrin, A.E.; Tiruvadi, V.R.; Hwang, S.W.; Vanleer, A.C.; et al. Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in Vivo. Nat. Neurosci. 2011, 14, 1599–1605. [Google Scholar] [CrossRef]
- Peng, Q.; Xiong, W.; Tan, X.; Venkataraman, M.; Mahendran, A.R.; Lammer, H.; Kejzlar, P.; Militky, J. Effects of Ultrasonic-Assisted Nickel Pretreatment Method on Electroless Copper Plating over Graphene. Sci. Rep. 2022, 12, 21159. [Google Scholar] [CrossRef]
- Tudela, I.; Zhang, Y.; Pal, M.; Kerr, I.; Mason, T.J.; Cobley, A.J. Ultrasound-Assisted Electrodeposition of Nickel: Effect of Ultrasonic Power on the Characteristics of Thin Coatings. Surf. Coatings Technol. 2015, 264, 49–59. [Google Scholar] [CrossRef]
- Costa, J.M.; Almeida Neto, A.F. de Ultrasound-Assisted Electrodeposition and Synthesis of Alloys and Composite Materials: A Review. Ultrason. Sonochemistry 2020, 68, 105193. [Google Scholar] [CrossRef]
- Bonin, L.; Bains, N.; Vitry, V.; Cobley, A.J. Electroless Deposition of Nickel-Boron Coatings Using Low Frequency Ultrasonic Agitation: Effect of Ultrasonic Frequency on the Coatings. Ultrasonics 2017, 77, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.J.; Roy, S. Electrodeposition of Copper Patterns Using EnFACE Technique under Ultrasonic Agitation. Chem. Eng. 2014, 41, 37–42. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung Der Größe Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; Weidmannsche Buchhandlung: Berlin, Germany, 1918; pp. 98–100. [Google Scholar]
Sample Name | MEA Type | No. of Active Electrodes | Electrode Diameter (µm) | Deposition Current Density (mA/cm2) | Electrodeposition Duration (Minutes) | Ultrasonic Bath Mode * | |
---|---|---|---|---|---|---|---|
Experiment 1 | NS-H1 | S1 | 21 | 65 | 8 | 60 | NS |
PS-H1 | S1 | 21 | 65 | 8 | 60 | PS | |
CS-H1 | S1 | 21 | 65 | 8 | 60 | CS | |
Experiment 2 | NS-L1 | S1 | 21 | 65 | 4 | 60 | NS |
PS-L1 | S1 | 21 | 65 | 4 | 60 | PS | |
CS-L1 | S1 | 21 | 65 | 4 | 60 | CS | |
Experiment 3 | CS-L2 | S2 | 41 | 65 | 4 | 120 | CS |
CS-L3 | S2 | 41 | 65 | 4 | 180 | CS | |
CS-L2 r ** | S2 | 41 | 65 | 4 | 120 | CS | |
CS-L3 r | S2 | 41 | 65 | 4 | 180 | CS | |
Experiment 4 | CS-L4 (HD) | S3 | 44 | 65 | 4 | 240 | CS |
Sample | (111) 1 | (311) | (220) | (200) | Average Grain Size (nm) |
---|---|---|---|---|---|
FWHM | FWHM | FWHM | FWHM | ||
Substrate | 0.20524 | - | - | - | 40.96 |
NSED | 0.15433 | 0.25735 | 0.21134 | 0.23835 | 43.63 |
PSED | 0.14565 | 0.2244 | 0.1736 | 0.23286 | 48.51 |
CSED | 0.14751 | 0.23751 | 0.18359 | 0.2303 | 47.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, N.; Giacomozzi, F.; Cian, A.; Giubertoni, D.; Lorenzelli, L. Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition. Sensors 2024, 24, 1251. https://doi.org/10.3390/s24041251
Yadav N, Giacomozzi F, Cian A, Giubertoni D, Lorenzelli L. Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition. Sensors. 2024; 24(4):1251. https://doi.org/10.3390/s24041251
Chicago/Turabian StyleYadav, Neeraj, Flavio Giacomozzi, Alessandro Cian, Damiano Giubertoni, and Leandro Lorenzelli. 2024. "Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition" Sensors 24, no. 4: 1251. https://doi.org/10.3390/s24041251
APA StyleYadav, N., Giacomozzi, F., Cian, A., Giubertoni, D., & Lorenzelli, L. (2024). Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition. Sensors, 24(4), 1251. https://doi.org/10.3390/s24041251