Advances in GNSS Positioning and GNSS Remote Sensing
- -
- Natural threats such as space weather events including geomagnetic and ionospheric storms, solar flares, ionospheric scintillations [6]. The upcoming solar cycle 25 maximum could cause adverse space weather events that degrade the GNSS signals (the GNSS RFI threats have increased rapidly since 2018: EASA, the EU Aviation Safety Agency, and the European Common Repository reported 4689 GNSS Events in 2022 and 4147 GNSS Events in the first half of 2023 due to tense international situations [7]).
- -
- Intentional threats (Jamming and spoofing).
- -
- Unintentional interferences (LTE700 band).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- He, L.; Guo, C.; Yue, Q.; Zhang, S.; Qin, Z.; Zhang, J. A Novel Ionospheric Disturbance Index to Evaluate the Global Effect on BeiDou Navigation Satellite System Signal Caused by the Moderate Geomagnetic Storm on May 12, 2021. Sensors 2023, 23, 1183. https://doi.org/10.3390/s23031183.
- Yasyukevich, Y.V.; Zatolokin, D.; Padokhin, A.; Wang, N.; Nava, B.; Li, Z.; Yuan, Y.; Yasyukevich, A.; Chen, C.; Vesnin, A. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Sensors 2023, 23, 4773. https://doi.org/10.3390/s23104773.
- Gulyaeva, T.; Hernández-Pajares, M.; Stanislawska, I. Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms. Sensors 2023, 23, 7005. https://doi.org/10.3390/s23157005.
- Aroca-Farrerons, J.M.; Hernández-Pajares, M.; Lyu, H.; Roma-Dollase, D.; Orus-Perez, R.; García-Rigo, A.; Graffigna, V.; Olivares-Pulido, G.; Monte-Moreno, E.; Yang, H.; et al. The Spectrum of Global Electron Content: A New Potential Indicator of Space Weather Activity. Sensors 2024, 24, 393. https://doi.org/10.3390/s24020393.
- Bronk, K.; Lipka, A.; Niski, R. Preparations for Galileo PRS in Poland. Sensors 2023, 23, 1770. https://doi.org/10.3390/s23041770.
- Krietemeyer, A.; Van Der Marel, H.; Van De Giesen, N.; Ten Veldhuis, M.-C. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. Sensors 2022, 22, 2267. https://doi.org/10.3390/s22062267.
- Islam, S.; Bhuiyan, M.Z.H.; Thombre, S.; Kaasalainen, S. Combating Single-Frequency Jamming through a Multi-Frequency, Multi-Constellation Software Receiver: A Case Study for Maritime Navigation in the Gulf of Finland. Sensors 2022, 22, 2294. https://doi.org/10.3390/s22062294.
- Hamza, V.; Stopar, B.; Sterle, O.; Pavlovčič-Prešeren, P. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas. Sensors 2023, 23, 2861. https://doi.org/10.3390/s23052861.
- Swaminathan, H.B.; Sommer, A.; Becker, A.; Atzmueller, M. Performance Evaluation of GNSS Position Augmentation Methods for Autonomous Vehicles in Urban Environments. Sensors 2022, 22, 8419. https://doi.org/10.3390/s22218419.
- Kim, E.; Song, J.; Shin, Y.; Kim, S.; Son, P.-W.; Park, S.; Park, S. Fault-Free Protection Level Equation for CLAS PPP-RTK and Experimental Evaluations. Sensors 2022, 22, 3570. https://doi.org/10.3390/s22093570.
References
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G. Low-Cost, 4-System, Precise GNSS Positioning: A GPS, Galileo, BDS and QZSS Ionosphere-Weighted RTK Analysis. Meas. Sci. Technol. 2017, 28, 125801. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef]
- Wanninger, L.; Heßelbarth, A. GNSS Code and Carrier Phase Observations of a Huawei P30 Smartphone: Quality Assessment and Centimeter-Accurate Positioning. GPS Solut. 2020, 24, 64. [Google Scholar] [CrossRef]
- Feng, S.; Ochieng, W.; Moore, T.; Hill, C.; Hide, C. Carrier Phase-Based Integrity Monitoring for High-Accuracy Positioning. GPS Solut. 2009, 13, 13–22. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y.; Sergeeva, M.A.; Vesnin, A. Space Weather Impact on GNSS Performance; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-031-15873-5. [Google Scholar]
- Berz, G. GNSS Interference and Civil Aviation. UN-ICG, WG-S, IDM. 20 August 2023. Available online: https://rntfnd.org/wp-content/uploads/Aviation-GNSS-interference-UN-ICG-WGS-IDM-ECTL-GNSS-RFI-SEP23.pdf (accessed on 1 February 2024).
- He, L.; Guo, C.; Yue, Q.; Zhang, S.; Qin, Z.; Zhang, J. A Novel Ionospheric Disturbance Index to Evaluate the Global Effect on BeiDou Navigation Satellite System Signal Caused by the Moderate Geomagnetic Storm on 12 May 2021. Sensors 2023, 23, 1183. [Google Scholar] [CrossRef] [PubMed]
- Yasyukevich, Y.V.; Zatolokin, D.; Padokhin, A.; Wang, N.; Nava, B.; Li, Z.; Yuan, Y.; Yasyukevich, A.; Chen, C.; Vesnin, A. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Sensors 2023, 23, 4773. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, T.; Hernández-Pajares, M.; Stanislawska, I. Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms. Sensors 2023, 23, 7005. [Google Scholar] [CrossRef] [PubMed]
- Aroca-Farrerons, J.M.; Hernández-Pajares, M.; Lyu, H.; Roma-Dollase, D.; Orus-Perez, R.; García-Rigo, A.; Graffigna, V.; Olivares-Pulido, G.; Monte-Moreno, E.; Yang, H.; et al. The Spectrum of Global Electron Content: A New Potential Indicator of Space Weather Activity. Sensors 2024, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- Bronk, K.; Lipka, A.; Niski, R. Preparations for Galileo PRS in Poland. Sensors 2023, 23, 1770. [Google Scholar] [CrossRef] [PubMed]
- Krietemeyer, A.; Van Der Marel, H.; Van De Giesen, N.; Ten Veldhuis, M.-C. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. Sensors 2022, 22, 2267. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Bhuiyan, M.Z.H.; Thombre, S.; Kaasalainen, S. Combating Single-Frequency Jamming through a Multi-Frequency, Multi-Constellation Software Receiver: A Case Study for Maritime Navigation in the Gulf of Finland. Sensors 2022, 22, 2294. [Google Scholar] [CrossRef] [PubMed]
- Hamza, V.; Stopar, B.; Sterle, O.; Pavlovčič-Prešeren, P. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas. Sensors 2023, 23, 2861. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, H.B.; Sommer, A.; Becker, A.; Atzmueller, M. Performance Evaluation of GNSS Position Augmentation Methods for Autonomous Vehicles in Urban Environments. Sensors 2022, 22, 8419. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Song, J.; Shin, Y.; Kim, S.; Son, P.-W.; Park, S.; Park, S. Fault-Free Protection Level Equation for CLAS PPP-RTK and Experimental Evaluations. Sensors 2022, 22, 3570. [Google Scholar] [CrossRef] [PubMed]
- Astafyeva, E.; Yasyukevich, Y.; Maksikov, A.; Zhivetiev, I. Geomagnetic Storms, Super-storms, and Their Impacts on GPS-based Navigation Systems. Space Weather. 2014, 12, 508–525. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Demyanov, V.V.; Kondakova, T.N. Degradation of GPS Performance in Geomagnetically Disturbed Conditions. GPS Solut. 2003, 7, 109–119. [Google Scholar] [CrossRef]
- European Union Agency for the Space Programme. EUSPA EO and GNSS Market Report; Publications Office: Luxembourg, 2022. [Google Scholar]
- Rovira-Garcia, A.; Ibáñez-Segura, D.; Orús-Perez, R.; Juan, J.M.; Sanz, J.; González-Casado, G. Assessing the Quality of Ionospheric Models through GNSS Positioning Error: Methodology and Results. GPS Solut. 2020, 24, 4. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Oinats, A.V.; Yasukevich, Y.V.; Zhivetiev, I.V. Global Electron Content: A New Conception to Track Solar Activity. Ann. Geophys. 2008, 26, 335–344. [Google Scholar] [CrossRef]
- Yasyukevich, Y.; Padokhin, A.; Vesnin, A.; Bykov, A.; Kiselev, A.; Ivanov, A.; Yasyukevich, A. Ionospheric Global and Regional Electron Contents in Solar Cycles 23–25. Symmetry 2023, 15, 1940. [Google Scholar] [CrossRef]
- Gurtner, W.; Estey, L. RINEX: The Receiver Independent Exchange Format, Version 2.11; UNAVCO Boulder: Boulder, CO, USA, 2007.
- Gurtner, W.; Estey, L. RINEX: The Receiver Independent Exchange Format, Version 3.01; UNAVCO Boulder: Boulder, CO, USA, 2009.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasyukevich, Y.V.; Zhang, B.; Devanaboyina, V.R. Advances in GNSS Positioning and GNSS Remote Sensing. Sensors 2024, 24, 1200. https://doi.org/10.3390/s24041200
Yasyukevich YV, Zhang B, Devanaboyina VR. Advances in GNSS Positioning and GNSS Remote Sensing. Sensors. 2024; 24(4):1200. https://doi.org/10.3390/s24041200
Chicago/Turabian StyleYasyukevich, Yury V., Baocheng Zhang, and Venkata Ratnam Devanaboyina. 2024. "Advances in GNSS Positioning and GNSS Remote Sensing" Sensors 24, no. 4: 1200. https://doi.org/10.3390/s24041200
APA StyleYasyukevich, Y. V., Zhang, B., & Devanaboyina, V. R. (2024). Advances in GNSS Positioning and GNSS Remote Sensing. Sensors, 24(4), 1200. https://doi.org/10.3390/s24041200