Utilizing 3D Point Cloud Technology with Deep Learning for Automated Measurement and Analysis of Dairy Cows
Abstract
:1. Introduction
- The multi-camera synchronization system helps minimize outliers and increase the accuracy of dairy cow 3D reconstruction, thereby avoiding factors that seriously affect the accuracy of dairy cow body size measurement.
- Enhancements to the previous 3D reconstruction system result in more precise stitching between the bottom and top cameras based on the camera system’s initialization matrix.
- Automatic measurement and analysis of various parts of dairy cows are conducted with high accuracy.
2. Related Works
3. The Dairy Cows 3D Reconstruction
3.1. The Camera Synchronization System
3.2. Dairy Cow 3D Reconstruction Improvement
3.3. Dairy Cow 3D Point Cloud Extraction and Normalization
4. Automated Measurement and Analysis of Dairy Cows via 3D Point Cloud
4.1. Dairy Cow Body Automated Measurement
4.2. Stature Height
4.3. Rump Angle
4.4. Rump Width
4.5. Front Teat Length
5. Experimental Results
5.1. The Camera Synchronization System
5.2. Dairy Cow Body Automated Measurement
5.2.1. Stature Height
5.2.2. Rump Angle
5.2.3. Rump Width
5.2.4. Front Teat Length
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
NTP | Network Time Protocol |
RANSAC | Random Sample Consensus |
RMSE | Root Mean Square Error |
ROI | Region of Interest |
SLAM | Simultaneous Localization and Mapping |
References
- Weber, V.A.M.; de Lima Weber, F.; da Silva Oliveira, A.; Astolfi, G.; Menezes, G.V.; de Andrade Porto, J.V.; Pistori, H. Cattle weight estimation using active contour models and regression trees Bagging. Comput. Electron. Agric. 2020, 179, 105804. [Google Scholar] [CrossRef]
- Nir, O.; Parmet, Y.; Werner, D.; Adin, G.; Halachmi, I. 3D Computer-vision system for automatically estimating heifer height and body mass. Biosyst. Eng. 2018, 173, 4–10. [Google Scholar] [CrossRef]
- Pallottino, F.; Steri, R.; Menesatti, P.; Antonucci, F.; Costa, C.; Figorilli, S.; Catillo, G. Comparison between manual and stereovision body traits measurements of Lipizzan horses. Comput. Electron. Agric. 2015, 118, 408–413. [Google Scholar] [CrossRef]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodríguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Body condition estimation on cows from depth images using Convolutional Neural Networks. Comput. Electron. Agric. 2018, 155, 12–22. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, G.; Jing, L.; Si, Y.S.; Ren, X.H.; Ma, L. Automatic extraction method of cow’s back body measuring point based on simplification point cloud. Trans. Chin. Soc. Agric. Mach. 2019, 50, 267–275. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, J.; Teng, G. Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm. Comput. Electron. Agric. 2019, 156, 399–405. [Google Scholar] [CrossRef]
- Rodríguez Alvarez, J.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef]
- He, D.J.; Niu, J.Y.; Zhang, Z.R.; Guo, Y.Y.; Tan, Y. Repairing method of missing area of dairy cows’point cloud based on improved cubic b-spline curve. Trans. Chin. Soc. Agric. Mach. 2018, 49, 225–231. [Google Scholar] [CrossRef]
- Yoon, H.; Jang, M.; Huh, J.; Kang, J.; Lee, S. Multiple Sensor Synchronization with theRealSense RGB-D Camera. Sensors 2021, 21, 6276. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Guo, H.; Du, A.; Su, Y.; Ruchay, A.; Marinello, F.; Pezzuolo, A. 2-D/3-D fusion-based robust pose normalisation of 3-D livestock from multiple RGB-D cameras. Biosyst. Eng. 2021, 223, 129–141. [Google Scholar] [CrossRef]
- Dang, C.; Choi, T.; Lee, S.; Lee, S.; Alam, M.; Park, M.; Han, S.; Lee, J.; Hoang, D. Machine Learning-Based Live Weight Estimation for Hanwoo Cow. Sustainability 2022, 14, 12661. [Google Scholar] [CrossRef]
- Mills, D.; Martin, J.; Burbank, J.; Kasch, W. Network Time Protocol Version 4: Protocol and Algorithms Specification. no. 5905, RFC Editor, June 2010. Available online: https://www.rfc-editor.org/rfc/rfc5905.html (accessed on 21 November 2023).
- Johannessen, S. Time synchronization in a local area network. IEEE Control. Syst. Mag. 2004, 24, 61–69. [Google Scholar]
- Dang, C.; Choi, T.; Lee, S.; Lee, S.; Alam, M.; Lee, S.; Han, S.; Hoang, D.T.; Lee, J.; Nguyen, D.T. Case Study: Improving the Quality of Dairy Cow Reconstruction with a Deep Learning-Based Framework. Sensors 2022, 22, 9325. [Google Scholar] [CrossRef] [PubMed]
- Steinbrucker, F.; Sturm, J.; Cremers, D. Real-time visual odometry from dense RGB-D images. In Proceedings of the ICCV Workshops, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the ICCV, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Stewenius, H.; Engels, C.; Nistér, D. Recent developments on direct relative orientation. Isprs J. Photogramm. Remote Sens. 2006, 60, 284–294. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Fast global registration. In Proceedings of the ECCV, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. [Google Scholar] [CrossRef]
- Falque, R.; Vidal-Calleja, T.; Alempijevic, A. Semantic Keypoint Extraction for Scanned Animals using Multi-Depth-Camera Systems. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 11794–11801. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 5105–5114. [Google Scholar]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kuzuhara, Y.; Kawamura, K.; Yoshitoshi, R.; Tamaki, T.; Sugai, S.; Ikegami, M.; Kurokawa, Y.; Obitsu, T.; Okita, M.; Sugino, T.; et al. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Comput. Electron. Agric. 2015, 111, 186–193. [Google Scholar] [CrossRef]
- Salau, J.; Haas, J.H.; Junge, W.; Thaller, G. A multi-Kinect cow scanning system: Calculating linear traits from manually marked recordings of Holstein-Friesian dairy cows. Biosyst. Eng. 2017, 157, 92–98. [Google Scholar] [CrossRef]
- Le Cozler, Y.; Allain, C.; Xavier, C.; Depuille, L.; Caillot, A.; Delouard, J.M.; Delattre, L.; Luginbuhl, T.; Faverdin, P. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation. Comput. Electron. Agric. 2019, 165, 104977. [Google Scholar] [CrossRef]
- Song, X.; Bokkers, E.A.M.; Van Mourik, S.; Koerkamp, P.G.; Van Der Tol, P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef]
- Ruchay, A.; Kober, V.; Dorofeev, K.; Kolpakov, V.; Miroshnikov, S. Accurate body measurement of live cattle using three depth cameras and non-rigid 3-D shape recovery. Comput. Electron. Agric. 2020, 179, 105821. [Google Scholar] [CrossRef]
Cow ID | Old Algorithm | New Algorithm | ||
---|---|---|---|---|
Fitness | Inlier RMSE | Fitness | Inlier RMSE | |
501363094 | 0.157 | 0.023 | 0.525 | 0.018 |
501363095 | 0.135 | 0.024 | 0.474 | 0.017 |
501208698 | 0.163 | 0.026 | 0.442 | 0.017 |
501349142 | 0.153 | 0.024 | 0.434 | 0.018 |
Operation System | Windows 10 |
---|---|
Python Version | 3.8.17 |
Deep Learning Framework | Pytorch 1.13.1 |
Loss Function | Mean Squared Error |
Optimization Algorithm | Adam [23] |
Learning Rate | 0.001 |
Number of Training Epochs | 100 (without early stop) |
Stature Value (cm) | Rump Angle | Rump Width (cm) | Front Teat Length (cm) | Score Measurement |
---|---|---|---|---|
128 (very small) | The left hip is 4 cm above the iliac crest | 5 | 2 | 1 |
131 | The left hip is 2 cm above the iliac crest | 6.5 | 3 | 2 |
134 (small) | The hip and iliac crest are level | 8 | 4 | 3 |
137 | The left hip is 2 cm below the iliac crest | 9.5 | 5 | 4 |
140 (medium level) | The left hip is 4 cm below the iliac crest | 11 | 6 | 5 |
143 | The left hip is 6 cm below the iliac crest | 12.5 | 7 | 6 |
146 (large) | The left hip is 8 cm below the iliac crest | 14 | 8 | 7 |
149 | The left hip is 10 cm below the iliac crest | 15.5 | 9 | 8 |
152 (very large) | The left hip is 12 cm below the iliac crest | 17 | 10 | 9 |
Device | Specification |
---|---|
Depth Camera (Intel RealSense D435i) |
|
Single Board Computer (Jetson Nano) |
|
Host Computer (Jetson Orin) |
|
Cow ID | Manual Height Measurement | Auto Height Measurement | Detection Error |
---|---|---|---|
500991129 | 145.28 | 144.87 | 0.41 |
501049585 | 149.09 | 147.79 | 1.31 |
501049591 | 147.21 | 146.78 | 0.43 |
501063723 | 142.87 | 142.27 | 0.60 |
501051848 | 151.02 | 150.54 | 0.48 |
⋮ | ⋮ | ⋮ | ⋮ |
501177073 | 148.97 | 148.29 | 0.69 |
501177573 | 148.34 | 147.70 | 0.64 |
501181588 | 147.17 | 147.32 | 0.15 |
501189051 | 146.92 | 147.02 | 0.09 |
501196133 | 148.03 | 147.90 | 0.13 |
Detection Average Error | 0.7 |
Cow ID | Manual Rump-Angle Measurement | Auto Rump-Angle Measurement | Detection Error |
---|---|---|---|
500991129 | 5.35 | 5.73 | 0.37 |
501034812 | 5.01 | 3.74 | 1.26 |
501049585 | 5.23 | 5.55 | 0.33 |
501049591 | 5.10 | 4.96 | 0.13 |
501051848 | 3.13 | 3.02 | 0.09 |
⋮ | ⋮ | ⋮ | ⋮ |
501324695 | 1.25 | 1.65 | 0.41 |
501324698 | 7.25 | 6.32 | 0.94 |
501324869 | 6.56 | 6.42 | 0.14 |
501326761 | 10.86 | 10.61 | 0.25 |
501326788 | 6.55 | 5.61 | 0.94 |
Detection Average Error | 0.61 |
Cow ID | Manual Rump-Width Measurement | Auto Rump-Width Measurement | Detection Error |
---|---|---|---|
500991129 | 8.68 | 12.73 | 4.05 |
501034812 | 10.67 | 10.40 | 0.28 |
501049585 | 11.33 | 13.05 | 1.72 |
501049591 | 11.56 | 12.65 | 1.09 |
501051848 | 9.89 | 11.67 | 1.78 |
⋮ | ⋮ | ⋮ | ⋮ |
501324695 | 14.06 | 11.87 | 2.19 |
501324698 | 15.4 | 14.22 | 1.18 |
501324869 | 13.9 | 12.23 | 1.67 |
501326761 | 12.92 | 27.13 | 14.21 |
501326788 | 12.91 | 12.94 | 0.03 |
Detection Average Error | 2.5 |
Cow ID | Manual Front Teat Length Measurement | Auto Front Teat Length Measurement | Detection Error |
---|---|---|---|
501031885 | 4.43 | 4.34 | 0.10 |
501049585 | 4.33 | 4.14 | 0.19 |
501093021 | 3.71 | 3.95 | 0.24 |
501105712 | 4.71 | 4.82 | 0.10 |
501118379 | 3.89 | 4.34 | 0.45 |
⋮ | ⋮ | ⋮ | ⋮ |
501381814 | 3.20 | 4.07 | 0.86 |
501382062 | 3.77 | 4.29 | 0.52 |
501382955 | 4.25 | 4.42 | 0.17 |
501383287 | 4.28 | 4.11 | 0.17 |
501386628 | 4.74 | 4.39 | 0.35 |
Detection Average Error | 0.79 |
Research | Measurement Method | Device | Object Processing | Animal | Object Measurement | Performance |
---|---|---|---|---|---|---|
Rodriguez Alvarez (2018) [7] | Automatic measurement | Kinect | Depth image | Cow | Body condition score | Accuracy: 78% within 0.25, Accuracy: 94% within 0.5 |
Nir et al. (2018) [2] | Automatic measurement | Kinect | Depth image | Cow | Hip height, withers height | Mean relative absolute error less than 1.17% |
Zhang et al. (2019) [5] | Automatic measurement | Kinect | Depth image | Cow | Measurement points on the backside | Mean absolute error less than 1.17 cm |
Weber et al. (2020) [1] | Automatic measurement | RGB camera | 2D image | Cow | Feature points on the backside | N/A |
Kuzuhara et al. (2015) [24] | Manual measurement | Xtion pro | Point cloud | Cow | Backside | N/A |
Salau et al. (2017) [25] | Manual measurement | Six Kinect | Point cloud | Cow | Teat length, heights of the ischial tuberos | Standard error range are 0.7∼1.5 mm, and 14.0∼22.5 mm |
Le Cozler et al. (2019) [26] | Manual measurement | Five LiDAR sensors | Point cloud | Cow | Volume and surface area | Coefficients of variation were 0.17% and 3.12% |
Song et al. (2019) [27] | Automatic measurement | Three Kinect | Depth image | Cow | Vertebral column, centerline of the sacral ligament, hook bone center | N/A |
Ruchay et al. (2020) [28] | Manual measurement | Three Kinect | Point cloud | Cattle | Withers height, hip height, chest depth, heart girth, ilium width, hip joint width, oblique body length, hip length, chest width | With a 90% confidence level, measurement errors less than 3% |
Our | Automatic measurement | RGB camera | Point cloud | Dairy Cow | Height (stature), rump angle, rump width, front teat length | Height (stature): mean absolute error, 0.7 cm Rump Angle: mean absolute error, 0.61 cm Rump Width: mean absolute error, 2.5 cm Front teat length: mean absolute error, 0.79 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.G.; Lee, S.S.; Alam, M.; Lee, S.M.; Seong, H.-S.; Park, M.N.; Han, S.; Nguyen, H.-P.; Baek, M.K.; Phan, A.T.; et al. Utilizing 3D Point Cloud Technology with Deep Learning for Automated Measurement and Analysis of Dairy Cows. Sensors 2024, 24, 987. https://doi.org/10.3390/s24030987
Lee JG, Lee SS, Alam M, Lee SM, Seong H-S, Park MN, Han S, Nguyen H-P, Baek MK, Phan AT, et al. Utilizing 3D Point Cloud Technology with Deep Learning for Automated Measurement and Analysis of Dairy Cows. Sensors. 2024; 24(3):987. https://doi.org/10.3390/s24030987
Chicago/Turabian StyleLee, Jae Gu, Seung Soo Lee, Mahboob Alam, Sang Min Lee, Ha-Seung Seong, Mi Na Park, Seungkyu Han, Hoang-Phong Nguyen, Min Ki Baek, Anh Tuan Phan, and et al. 2024. "Utilizing 3D Point Cloud Technology with Deep Learning for Automated Measurement and Analysis of Dairy Cows" Sensors 24, no. 3: 987. https://doi.org/10.3390/s24030987
APA StyleLee, J. G., Lee, S. S., Alam, M., Lee, S. M., Seong, H. -S., Park, M. N., Han, S., Nguyen, H. -P., Baek, M. K., Phan, A. T., Dang, C. G., & Nguyen, D. T. (2024). Utilizing 3D Point Cloud Technology with Deep Learning for Automated Measurement and Analysis of Dairy Cows. Sensors, 24(3), 987. https://doi.org/10.3390/s24030987