A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Characterizations
3. Results
3.1. Structural Characterization
3.2. Magnetic Characterization
3.3. Ferromagnetic Resonance
3.4. Magneto-Electric Effects in the BNx-PZT Bilayers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Nan, C.-W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G.J. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, J.M.; Zapata, J.A.; Gómez, M.E.; Prieto, P. Magnetoelectric coefficient in BiFeO3 compounds. J. Appl. Phys. 2008, 103, 07E306. [Google Scholar] [CrossRef]
- Zhou, Y.; Maurya, D.; Yan, Y.; Srinivasan, G.; Quandt, E.; Priya, S. Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvest. Syst. 2016, 3, 1–42. [Google Scholar] [CrossRef]
- Liu, S.; Liao, S.; Wei, K.; Deng, L.; Zhao, L.; Zou, H. Self-biased magnetoelectric composite for energy harvesting. Battery Energy 2023, 2, 20230005. [Google Scholar] [CrossRef]
- Yang, S.C.; Cho, K.-H.; Park, C.-S.; Priya, S. Self-biased converse magnetoelectric effect. Appl. Phys. Lett. 2011, 99, 202904. [Google Scholar] [CrossRef]
- Mandal, S.K.; Sreenivasulu, G.; Petrov, V.M.; Srinivasan, G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 2010, 96, 9916. [Google Scholar] [CrossRef]
- Mandal, S.K.; Sreenivasulu, G.; Petrov, V.M.; Srinivasan, G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Phys. Rev. B 2011, 84, 014432. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Mandal, S.K.; Bandekar, S.; Petrov, V.M.; Srinivasan, G. Low-Frequency and Resonance Magnetoelectric Effects in Piezoelectric and Functionally Stepped Ferromagnetic Layered Composites. Phys. Rev. B 2011, 84, 144426. [Google Scholar] [CrossRef]
- Laletin, U.; Sreenivasulu, G.; Petrov, V.M.; Garg, T.; Kulkarni, A.R.; Venkataramani, N.; Srinivasan, G. Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B 2012, 85, 104404. [Google Scholar] [CrossRef]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange biasing of magnetoelectric composites. Nature Mater. 2012, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Borisov, P.; Hochstrat, A.; Chen, X.; Kleemann, W.; Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 2005, 94, 117203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, S.C.; Apo, D.J.; Maurya, D.; Priya, S. Tunable self-biased magnetoelectric response in homogenous laminates. Appl. Phys. Lett. 2012, 101, 232905. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Y.; Priya, S. Giant Self-Biased Magnetoelectric Coupling in Co-fired Textured Layered Composites. Appl. Phys. Lett. 2013, 102, 052907. [Google Scholar] [CrossRef]
- Huang, T.; Becerra, L.; Gensbittel, A.; Zheng, Y.; Talleb, H.; Salas, U.A.; Ren, Z.; Marangolo, M. Self-Biased Magnetoelectric Ni/LiNbO3/Ni Trilayers for Body-Embedded Electronic Energy Harvesters. Phys. Rev. Appl. 2023, 20, 034059. [Google Scholar] [CrossRef]
- Wu, J.; Du, Y.; Xu, Y.; Qiao, J.; Qu, Y.; Wang, Z.; Dong, S.; Hu, Z.; Liu, M. Self-Biased Magnetoelectric Sensor Operating in d36 Face-Shear Mode. IEEE Sens. J. 2023, 23, 22366. [Google Scholar] [CrossRef]
- Annapureddy, V.; Park, S.H.; Song, H.; Ryu, J. Tunable self-biased magnetoelectric effect in magnetization-graded magnetoelectric composites. J. Alloy. Comp. 2023, 957, 170121. [Google Scholar] [CrossRef]
- Aubert, A.; Loyau, V.; Mazaleyrat, F.; LoBu, M. Investigation of Piezomagnetism in Nickel Ferrite. IEEE Trans. Magn. 2021, 57, 2501105. [Google Scholar] [CrossRef]
- Topal, U. Factors influencing the remanent properties of hard magnetic barium ferrites: Impurity phases and grain sizes. J. Magn. Magn. Mater. 2008, 320, 331–335. [Google Scholar] [CrossRef]
- Dudziak, S.; Ryżyńska, Z.; Bielan, Z.; Ryl, J.; Klimczuk, T.; Zielińska-Jurek, A. Pseudo-superparamagnetic behaviour of barium hexaferrite particles. RSC Adv. 2020, 10, 18784. [Google Scholar] [CrossRef]
- An, G.-H.; Hwang, T.-Y.; Kim, J.; Kim, J.B.; Kang, N.; Jeon, K.-W.; Kang, M.; Cho, Y.-H. Novel method for low temperature sintering of barium hexaferrite with magnetic easy-axis alignment. J. Euro. Ceram. Soc. 2014, 34, 1227–1233. [Google Scholar] [CrossRef]
- Anantharamaiah, P.N.; Prerna Rao, B.; Shashanka, H.M.; Chelvane, J.A.; Khopkar, V.; Sahoo, B. Role of Mg2+ and In3+ substitution on magnetic, magnetostrictive and dielectric properties of NiFe2O4 ceramics derived from nanopowders. Phys. Chem. Chem. Phys. 2021, 23, 1694. [Google Scholar] [CrossRef] [PubMed]
- Licei, F.; Rinaldi, S. Magnetostriction of some hexagonal ferrites. J. Appl. Phys. 1981, 52, 2442–2443. [Google Scholar]
- Sheen, J. Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques. Meas. Sci. Technol. 2009, 20, 042001. [Google Scholar] [CrossRef]
- Joseph, R.I.; Schlömann, E. Demagnetizing Field in Nonellipsoidal Bodies. J. Appl. Phys. 1965, 36, 1579. [Google Scholar] [CrossRef]
- Hellwege, K.-H.; Springer, A.M. (Eds.) Landolt-Bornstein; Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, Volume 4(b), Magnetic and Other Properties of Oxides; Springer: New York, NY, USA, 1970. [Google Scholar]
- Naiden, E.P.; Zhuravlev, V.A.; Minin, R.V.; Itin, V.I.; Korovin, E.Y. Static and dynamic magnetic properties of nanosized barium hexaferrite powders prepared by the sol-gel combustion method. Russ. Phys. J. 2015, 58, 125. [Google Scholar] [CrossRef]
- Nie, Y.; Harward, I.; Balin, K.; Beaubien, A.; Celinski, Z. Preparation and characterization of barium hexagonal ferrite thin films on a Pt template. J. Appl. Phys. 2010, 107, 073903. [Google Scholar] [CrossRef]
- Wu, M. M-type barium hexagonal ferrite films. In Advanced Magnetic Materials; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Gilbert, T.L. A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Trans. Magn. 2004, 40, 3443. [Google Scholar] [CrossRef]
- Robbennolt, S.; Sasaki, S.S.; Wallace, T.; Bartholomew, M.; Tolbert, S.H. Fabrication and magnetic properties of Sol-Gel derived NiZn ferrite thin films for microwave applications. Adv. Mater. Lett. 2018, 9, 345. [Google Scholar] [CrossRef]
- Lumetzberger, J.; Buchner, M.; Pile, S.; Ney, V.; Gaderbauer, W.; Daffé, N.; Moro, M.V.; Primetzhofer, D.; Lenz, K.; Ney, A. Influence of structure and cation distribution on magnetic anisotropy and damping in Zn/Al doped nickel ferrites. Phys. Rev. B 2020, 102, 054402. [Google Scholar] [CrossRef]
- Sharma, V.; Kumari, S.; Kuanr, B.K. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics. AIP Adv. 2018, 8, 056232. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, X.; Xia, B.; Chu, B. Magnetoelectric response in laminated BaFe12O19/Pb(Zr,Ti)O3 composites. J. Appl. Phys. 2023, 133, 244101. [Google Scholar] [CrossRef]
- Zhai, J.; Cai, N.; Shi, Z.; Lin, Y.; Nan, C.-W. Coupled magnetodielectric properties of laminated PbZr0.53Ti0.47O3/NiFe2O4 ceramics. J. Appl. Phys. 2004, 95, 5685–5690. [Google Scholar] [CrossRef]
- Hong-Xia, C.; Qian, S.; Jia-yang, Y.; Yu, F.; Huang, S. Transverse Magnetoelectric effect in nickel zinc ferriteLead zirconate titanate layered composites. Adv. Mater. Res. 2015, 1061–1062, 184–188. [Google Scholar]
- Srinivasan, G.; Rasmussen, E.T.; Gallegos, J.; Srinivasan, R.; Bokhan, Y.I.; Laletin, V.M. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev B 2001, 64, 214408. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Zeng, M.; Wan, J.G.; Zhang, M.F.; Liu, J.-M.; Nan, C.W. Numerical modeling of the magnetoelectric effect in magnetostrictive piezoelectric bilayers. Appl. Phys. A 2005, 81, 1197. [Google Scholar] [CrossRef]
- Cótica, L.F.; Betal, S.; Morrow, C.T.; Priya, S.; Guo, R.; Bhalla, A.S. Thermal effects in magnetoelectric properties of NiFe2O4/Pb(Zr0.52Ti0.48)O3/NiFe2O4 tri-layered composite. Integr. Ferroelectr. 2016, 176, 203–209. [Google Scholar] [CrossRef]
- Röschmann, P.; Lemke, M.; Tolksdorf, W.; Welz, F. Anisotropy fields and FMR linewidth in single-crystal Al, Ga and Sc substituted hexagonal ferrites with M structure. Mater. Res. Bull. 1984, 19, 385. [Google Scholar] [CrossRef]
Sample | Demagnetization Factors | ||
---|---|---|---|
Nx | Ny | Nz | |
BN33 | 0.11164 | 0.31851 | 0.56984 |
BN38 | 0.11238 | 0.32595 | 0.56167 |
BN41 | 0.10642 | 0.2778 | 0.61578 |
BN44 | 0.10168 | 0.30318 | 0.59514 |
BN47 | 0.11442 | 0.2892 | 0.59638 |
BN60 | 0.16197 | 031884 | 0.51919 |
BN75 | 0.19305 | 0.40187 | 0.40508 |
BN85 | 0.12413 | 0.22542 | 0.65045 |
BN95 | 0.10323 | 0.20369 | 0.69308 |
NFO | 0.11812 | 0.40771 | 0.47417 |
Sample | FMR Fitting Parameters | Measured Saturation Magnetization, 4πMs (kG) | HA (kOe) | Coercive Field (kOe) | Remanent Magnetization (Mr) (kG) | Gilbert Damping Coefficient Calculation | ||
---|---|---|---|---|---|---|---|---|
γ (GHz/kOe) | 4πMeff (kOe) | Frequency Width (GHz) | Gilbert Damping Coefficient (α) | |||||
BN33 | 3.17 | 3.53 | 2.63 | 0.90 | 0.255 | 0.91 | 3.071 | 0.02450 |
BN38 | 3.26 | 3.46 | 2.68 | 0.78 | 0.161 | 0.77 | 3.042 | 0.02452 |
BN41 | 3.03 | 4.80 | 2.34 | 2.46 | 0.124 | 0.63 | 3.324 | 0.02491 |
BN44 | 2.96 | 5.30 | 2.88 | 2.42 | 0.114 | 0.49 | 3.35 | 0.02389 |
BN47 | 2.98 | 5.51 | 2.88 | 2.63 | 0.111 | 0.59 | 3.25 | 0.02354 |
BN60 | 2.61 | 10.07 | 2.75 | 7.32 | 0.089 | 0.73 | 2.739 | 0.01699 |
BN75 | 2.71 | 10.54 | 2.77 | 7.77 | 0.046 | 1.04 | 2.943 | 0.01911 |
BN85 | 2.98 | 7.49 | 2.92 | 4.57 | 0.034 | 0.73 | 2.535 | 0.01635 |
BN95 | 2.96 | 7.25 | 2.87 | 4.38 | 0.035 | 0.83 | 2.549 | 0.01613 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Acharya, S.; Popov, M.; Sauyet, T.; Pfund, J.; Bidthanapally, R.; Jain, M.; Page, M.R.; Srinivasan, G. A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT. Sensors 2023, 23, 9815. https://doi.org/10.3390/s23249815
Saha S, Acharya S, Popov M, Sauyet T, Pfund J, Bidthanapally R, Jain M, Page MR, Srinivasan G. A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT. Sensors. 2023; 23(24):9815. https://doi.org/10.3390/s23249815
Chicago/Turabian StyleSaha, Sujoy, Sabita Acharya, Maksym Popov, Theodore Sauyet, Jacob Pfund, Rao Bidthanapally, Menka Jain, Michael R. Page, and Gopalan Srinivasan. 2023. "A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT" Sensors 23, no. 24: 9815. https://doi.org/10.3390/s23249815
APA StyleSaha, S., Acharya, S., Popov, M., Sauyet, T., Pfund, J., Bidthanapally, R., Jain, M., Page, M. R., & Srinivasan, G. (2023). A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT. Sensors, 23(24), 9815. https://doi.org/10.3390/s23249815