An Efficient Early-breaking-estimation and Tree-splitting Missing RFID Tag Identification Protocol
Abstract
:1. Introduction
- Since the reader has no prior information about unknown tags, an efficient unknown tag number estimation method is of great importance to guarantee the required reliability. For time-saving consideration, existing works either lack the estimation process or only provide a rough estimation that the required reliability is not always guaranteed;
- Existing works implement Aloha-based strategies to identify missing tags. In each frame, unidentified tags are randomly assigned to slots with hash mapping. None of them considered making use of information in the preceding frames. The slot information is not fully used and the time efficiency needs further improvement;
- In previous works, tag replies to the reader with a one-bit short response. To reduce the time cost, several works considered using customized responses with the help of bit-tracking technology. However, there still exist many short response slots that lower the time efficiency.
- (1)
- A new early-breaking-estimation-based unknown tag deactivation (EBUD) method is developed to estimate the number of unknown tags and deactivate them within a short time. The early-breaking factor is chosen to balance time cost and estimation accuracy, and the number of frames is determined to guarantee the required reliability;
- (2)
- A new tree-splitting-based missing tag identification (TSMTI) method is designed to effectively identify missing tags. In TSMTI, the B-ary splitting tree method is developed to accelerate the identification process. The optimal frame factor and branch number in TSMTI are derived theoretically to minimize the execution time;
- (3)
- A bit-tracking response strategy that allows simultaneous replies of multiple tags is developed to accelerate the identification process. With customized tag responses, the reader can identify multiple tags in one slot, which greatly reduces identification time.
- (4)
- Theoretical analysis is conducted to optimize the parameter settings and derive the expressions of time cost in each phase. Numerous simulation results are presented to demonstrate the effectiveness of ETMTI. Compared with existing benchmark works, ETMTI takes a shorter identification time and a lower false negative rate to identify missing tags.
2. Related Works
2.1. Missing Tag Identification with Only Known Tags
2.2. Missing Tag Identification with Unknown Tags
3. System Model
4. Proposed ETMTI Protocol
4.1. Phase I: Early-breaking-estimation-Based Unknown Tag Deactivation
4.2. Phase II: Tree-splitting-Based Missing Tag Identification
- If the assigned segment is “10”, the tag sets and prepares an bits response string , where is the number of “10”s in . For instance, in frame of Figure 4, , and ;
- If the assigned segment is “11”, the tag does similar operations as the reader to obtain , and sets . As is shown in frame of Figure 4, , and ;
- If the assigned segment is “0”, the tag determines that it is an unknown tag and will be deactivated. In frame of Figure 4, we can observe that is deactivated.
5. Performance Analysis
5.1. Time Cost of Phase I
5.2. Time Cost of Phase II
5.3. False Negative Rate
5.4. Determination of in Phase I
6. Evaluation
6.1. Simulation Configurations
6.2. Time Cost of Phase I
6.3. Time Cost of Phase II
6.4. Effect of Unreliable Channels
6.5. Performance of the Overall Process
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Qian, C.; Han, J.; Xi, W.; Ding, H.; Jiang, Z.; Zhao, J. Verifiable Smart Packaging with Passive RFID. IEEE Trans. Mob. Comput. 2019, 18, 1217–1230. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Miao, C. Query Diversity Schemes for Backscatter RFID Communications with Single-Antenna Tags. IEEE Trans. Veh. Technol. 2017, 66, 6932–6941. [Google Scholar] [CrossRef]
- Song, X.; Hua, Y.; Yang, Y.; Xing, G.; Liu, F.; Xu, L.; Song, T. Distributed Resource Allocation With Federated Learning for Delay-Sensitive IoV Services. IEEE Trans. Veh. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- National Retail Federation. National Retail Security Survey 2022. [EB/OL]. Available online: https://nrf.com/research/national-retail-security-survey-2022 (accessed on 14 September 2022).
- Shahzad, M.; Liu, A.X. Fast and Reliable Detection and Identification of Missing RFID Tags in the Wild. IEEE/ACM Trans. Netw. 2016, 24, 3770–3784. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L.; Zhang, R.; Wang, K. Finding Needles in a Haystack: Missing Tag Detection in Large RFID Systems. IEEE Trans. Commun. 2017, 65, 2036–2047. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Zhou, Y.; Fang, Y. Missing-Tag Detection with Unknown Tags. IEEE/ACM Trans. Netw. 2020, 28, 1297–1310. [Google Scholar] [CrossRef]
- Li, T.; Chen, S.; Ling, Y. Efficient Protocols for Identifying the Missing Tags in a Large RFID System. IEEE/ACM Trans. Netw. 2013, 21, 1974–1987. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Min, G.; Shen, Y.; Liu, A.X.; Qu, W. A Multiple Hashing Approach to Complete Identification of Missing RFID Tags. IEEE Trans. Commun. 2014, 62, 1046–1057. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Min, G.; Shen, Y.; Liu, A.X.; Qu, W. Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way. IEEE Trans. Comput. 2015, 64, 87–96. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, W.; Atkinson, I.; Tang, X. A Time-Efficient Pair-Wise Collision-Resolving Protocol for Missing Tag Identification. IEEE Trans. Commun. 2017, 65, 5348–5361. [Google Scholar] [CrossRef]
- Su, J.; Sheng, Z.; Liu, A.X.; Fu, Z.; Huang, C. An Efficient Missing Tag Identification Approach in RFID Collisions. IEEE Trans. Mob. Comput. 2023, 22, 720–731. [Google Scholar] [CrossRef]
- Chen, H.; Xue, G.; Wang, Z. Efficient and Reliable Missing Tag Identification for Large-Scale RFID Systems with Unknown Tags. IEEE Internet Things J. 2017, 4, 736–748. [Google Scholar] [CrossRef]
- Zhu, W.; Meng, X.; Peng, X.; Cao, J.; Raynal, M. Collisions Are Preferred: RFID-Based Stocktaking with a High Missing Rate. IEEE Trans. Mob. Comput. 2020, 19, 1544–1554. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Wang, Y.; Chen, X.; Chen, L. Efficient Tag Grouping via Collision Reconciliation and Data Compression. IEEE Trans. Mob. Comput. 2021, 20, 1817–1831. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Xia, F.; Li, Y.; Shi, L. Efficiently and Completely Identifying Missing Key Tags for Anonymous RFID Systems. IEEE Internet Things J. 2018, 5, 2915–2926. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Wang, Y.; Chen, X.; Chen, L. Efficient missing tag identification in blocker-enabled RFID systems. Comput. Netw. 2019, 164, 106894. [Google Scholar] [CrossRef]
- Yu, J.; Gong, W.; Liu, J.; Chen, L.; Wang, K.; Zhang, R. Missing Tag Identification in COTS RFID Systems: Bridging the Gap between Theory and Practice. IEEE Trans. Mob. Comput. 2020, 19, 130–141. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, W.; Tang, X.; Li, Q.; Yan, Q. A Time- and Energy-Aware Collision Tree Protocol for Efficient Large-Scale RFID Tag Identification. IEEE Trans. Ind. Inform. 2018, 14, 2406–2417. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, W.; Tang, X. An Efficient Bit-Detecting Protocol for Continuous Tag Recognition in Mobile RFID Systems. IEEE Trans. Mob. Comput. 2018, 17, 503–516. [Google Scholar] [CrossRef]
- Su, J.; Chen, Y.; Sheng, Z.; Huang, Z.; Liu, A.X. From M-Ary Query to Bit Query: A New Strategy for Efficient Large-Scale RFID Identification. IEEE Trans. Commun. 2020, 68, 2381–2393. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X.; Li, K.; Min, G.; Xue, W. Fast temporal continuous scanning in RFID systems. Comput. Commun. 2017, 106, 46–56. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Gao, Y.; Zheng, X.; Dang, Z.; Shen, X. A Near-Optimal Protocol for the Grouping Problem in RFID Systems. IEEE Trans. Mob. Comput. 2021, 20, 1257–1272. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiao, B.; Chen, S.; Chen, J. Collision-Aware Churn Estimation in Large-Scale Dynamic RFID Systems. IEEE/ACM Trans. Netw. 2017, 25, 392–405. [Google Scholar] [CrossRef]
- Liu, X.; Xie, X.; Zhao, X.; Wang, K.; Li, K.; Liu, A.X.; Guo, S.; Wu, J. Fast Identification of Blocked RFID Tags. IEEE Trans. Mob. Comput. 2018, 17, 2041–2054. [Google Scholar] [CrossRef]
- Xi, Z.; Liu, X.; Luo, J.; Zhang, S.; Guo, S. Fast and Reliable Dynamic Tag Estimation in Large-Scale RFID Systems. IEEE Internet Things J. 2021, 8, 1651–1661. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B. A cardinality estimation scheme for the number of unknown RFID tags under unreliable channels. In Proceedings of the 2022 IEEE International Conference on Smart Internet of Things (SmartIoT), Suzhou, China, 19–21 August 2022; pp. 42–46. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, X.; Chen, X.; Yan, Y.; Chen, L. Time-Efficient Missing Tag Identification in an Open RFID System. ACM Trans. Sen. Netw. 2020, 16, 1–27. [Google Scholar] [CrossRef]
- Chen, X.; Yang, K.; Liu, X.; Xu, Y.; Luo, J.; Zhang, S. Efficient and accurate identification of missing tags for large-scale dynamic RFID systems. J. Syst. Archit. 2022, 124, 102394. [Google Scholar] [CrossRef]
- Chu, C.; Niu, J.; Zheng, W.; Su, J.; Wen, G. A Time-Efficient Protocol for Unknown Tag Identification in Large-Scale RFID Systems. IEEE Internet Things J. 2022, 9, 13024–13040. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Liu, J.; Qu, W.; Xiao, F.; Liu, A.X.; Cao, J.; Liu, J. Fast and accurate detection of unknown tags for RFID systems—Hash collisions are desirable. IEEE/ACM Trans. Netw. 2020, 28, 126–139. [Google Scholar] [CrossRef]
- GS1. EPC™ Radio-Frequency Identity Protocols Generation-2 UHF RFID Standard, Specification for RFID Air Interface Protocol for Communications at 860 MHz–960 MHz. [EB/OL]. Available online: https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf (accessed on 7 July 2018).
- Yang, L.; Han, J.; Qi, Y.; Wang, C.; Gu, T.; Liu, Y. Season: Shelving interference and joint identification in large-scale RFID systems. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 3092–3100. [Google Scholar] [CrossRef]
- Vogt, H. Efficient Object Identification with Passive RFID Tags. In Proceedings of the International Conference on Pervasive Computing, Zurich, Switzerland, 26–28 August 2002. [Google Scholar]
- Hush, D.; Wood, C. Analysis of tree algorithms for RFID arbitration. In Proceedings of the 1998 IEEE International Symposium on Information Theory, Cambridge, MA, USA, 16–21 August 1998; pp. 107–117. [Google Scholar] [CrossRef]
- P.S.O. Prevent Intentional Miss-Use of NFC Phones in Libraries. [EB/OL]. 2010. Available online: https://www.nxp.com/docs/en/product-brief/ICODE-Familydata-protection-for-Libraries.pdf (accessed on 10 October 2010).
- Griffin, J.D.; Durgin, G.D. Gains For RF Tags Using Multiple Antennas. IEEE Trans. Antennas Propag. 2008, 56, 563–570. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Li, X.Y.; Xiao, C.; Li, M.; Liu, Y. Tagoram: Real-Time Tracking of Mobile RFID Tags to High Precision Using COTS Devices. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom’14, New York, NY, USA, 7–11 September 2014; pp. 237–248. [Google Scholar] [CrossRef]
- Yang, L.; Qi, Y.; Han, J.; Wang, C.; Liu, Y. Shelving Interference and Joint Identification in Large-Scale RFID Systems. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3149–3159. [Google Scholar] [CrossRef]
1/2 | 1/4 | 1/8 | 1/16 | |
10.70% | 16.54% | 25.89% | 30.18% | |
55.37 | 29.06 | 16.8 | 9.6 |
0.01 | 0.05 | 0.10 | 0.15 | 0.20 | |
0.007 | 0.035 | 0.069 | 0.099 | 0.128 |
Senarios | |||||
---|---|---|---|---|---|
Phase I | 0.95 | 0 | 0.1 | ||
0.99 | 0 | 0.1 | |||
0.95 | 3000 | 0 | |||
0.99 | 3000 | 0 | |||
Phase II | - | 0.3 | 0 | ||
- | 3000 | 0 | |||
Overall | 0.95 or 0.99 | 0.3 | 0.1 | ||
0.95 or 0.99 | 3000 | 0.1 | |||
0.95 or 0.99 | 3000 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Zhang, L.; Lei, L.; Yu, C. An Efficient Early-breaking-estimation and Tree-splitting Missing RFID Tag Identification Protocol. Sensors 2023, 23, 9318. https://doi.org/10.3390/s23239318
Fan M, Zhang L, Lei L, Yu C. An Efficient Early-breaking-estimation and Tree-splitting Missing RFID Tag Identification Protocol. Sensors. 2023; 23(23):9318. https://doi.org/10.3390/s23239318
Chicago/Turabian StyleFan, Mingqiu, Lijuan Zhang, Lei Lei, and Chunni Yu. 2023. "An Efficient Early-breaking-estimation and Tree-splitting Missing RFID Tag Identification Protocol" Sensors 23, no. 23: 9318. https://doi.org/10.3390/s23239318
APA StyleFan, M., Zhang, L., Lei, L., & Yu, C. (2023). An Efficient Early-breaking-estimation and Tree-splitting Missing RFID Tag Identification Protocol. Sensors, 23(23), 9318. https://doi.org/10.3390/s23239318