CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets and Data Processing
2.2. The Proposed Reconstruction Model
2.3. The Loss Function
2.4. Model Training
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montefusco, L.B.; Lazzaro, D.; Papi, S.; Guerrini, C. A fast compressed sensing approach to 3D MR image reconstruction. IEEE Trans. Med. Imaging 2011, 30, 1064–1075. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.H.; Lee, D.; Ye, J.C. A General Framework for Compressed Sensing and Parallel MRI Using Annihilating Filter Based Low-Rank Hankel Matrix. IEEE Trans. Comput. Imaging 2016, 2, 480–495. [Google Scholar] [CrossRef]
- Huang, Y.; Paisley, J.; Lin, Q.; Ding, X.; Fu, X.; Zhang, X.P. Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans. Image Process 2014, 23, 5007–5019. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, W.; Guo, D.; Cai, C.; Cai, S.; Chen, Z. Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Probl. Sci. Eng. 2010, 18, 737–758. [Google Scholar] [CrossRef]
- Hollingsworth, K.G. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys. Med. Biol. 2015, 60, R297–R322. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Wang, S.-H.; Zhang, Y.-D. A Review of Deep Learning on Medical Image Analysis. Mob. Netw. Appl. 2020, 26, 351–380. [Google Scholar] [CrossRef]
- Wang, G.; Ye, J.C.; Mueller, K.; Fessler, J.A. Image Reconstruction is a New Frontier of Machine Learning. IEEE Trans. Med. Imaging 2018, 37, 1289–1296. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed Sensing MRI [A look at how CS can improve on current imaging techniques]. IEEE Signal Process. Mag. 2008, 25, 73–82. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Hyun, C.M.; Kim, H.P.; Lee, S.M.; Lee, S.; Seo, J.K. Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 2018, 63, 135007. [Google Scholar] [CrossRef]
- Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, Z.; Huang, Y.; Ding, X.; Paisley, J. Compressed sensing MRI using a recursive dilated network. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Yang, G.; Yu, S.; Dong, H.; Slabaugh, G.; Dragotti, P.L.; Ye, X.; Liu, F.; Arridge, S.; Keegan, J.; Guo, Y.; et al. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1310–1321. [Google Scholar] [CrossRef]
- Mardani, M.; Gong, E.; Cheng, J.Y.; Vasanawala, S.S.; Zaharchuk, G.; Xing, L.; Pauly, J.M. Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Trans. Med. Imaging 2019, 38, 167–179. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, C.; Zhang, H.; Yang, G. Deep attentive wasserstein generative adversarial networks for mri reconstruction with recurrent context-awareness. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Lima, Peru, 4–8 October 2020; pp. 167–177. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1125–1134. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Jiang, M.; Yuan, Z.; Yang, X.; Zhang, J.; Gong, Y.; Xia, L.; Li, T. Accelerating CS-MRI Reconstruction with Fine-Tuning Wasserstein Generative Adversarial Network. IEEE Access 2019, 7, 152347–152357. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Aghabiglou, A.; Eksioglu, E.M. Projection-Based cascaded U-Net model for MR image reconstruction. Comput. Methods Programs Biomed. 2021, 207, 106151. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, Y.; Zhang, J. Deep Geometric Distillation Network for Compressive Sensing MRI. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Virtual, 27–30 July 2021; pp. 1–4. [Google Scholar]
- Dai, Y.; Wang, C.; Wang, H. Deep compressed sensing MRI via a gradient-enhanced fusion model. Med. Phys. 2023, 50, 1390–1405. [Google Scholar] [CrossRef]
- Fan, X.; Yang, Y.; Chen, K.; Zhang, J.; Dong, K. An interpretable MRI reconstruction network with two-grid-cycle correction and geometric prior distillation. Biomed. Signal Process. Control. 2023, 84, 104821. [Google Scholar] [CrossRef]
- Geng, C.; Jiang, M.; Fang, X.; Li, Y.; Jin, G.; Chen, A.; Liu, F. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction. Comput. Methods Programs Biomed. 2023, 232, 107440. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Zhang, C.; Zhu, D. Undersampled MRI reconstruction based on spectral graph wavelet transform. Comput. Biol. Med. 2023, 157, 106780. [Google Scholar] [CrossRef]
- Zhou, W.; Du, H.; Mei, W.; Fang, L. Efficient structurally-strengthened generative adversarial network for MRI reconstruction. Neurocomputing 2021, 422, 51–61. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.; Xu, J.; Qiu, B. DBGAN: A dual-branch generative adversarial network for undersampled MRI reconstruction. Magn. Reson. Imaging 2022, 89, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Vasudeva, B.; Deora, P.; Bhattacharya, S.; Pradhan, P.M. Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued Generative Adversarial Network. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 1779–1788. [Google Scholar]
- Xu, J.; Bi, W.; Yan, L.; Du, H.; Qiu, B. An Efficient Lightweight Generative Adversarial Network for Compressed Sensing Magnetic Resonance Imaging Reconstruction. IEEE Access 2023, 11, 24604–24614. [Google Scholar] [CrossRef]
- Li, G.; Lv, J.; Wang, C. A Modified Generative Adversarial Network Using Spatial and Channel-Wise Attention for CS-MRI Reconstruction. IEEE Access 2021, 9, 83185–83198. [Google Scholar] [CrossRef]
- Zhou, W.; Du, H.; Mei, W.; Fang, L. Spatial orthogonal attention generative adversarial network for MRI reconstruction. Med. Phys. 2021, 48, 627–639. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Wu, H.; Yang, G. Fast MRI Reconstruction: How Powerful Transformers Are? arXiv 2022, arXiv:2201.09400. [Google Scholar]
- Zhao, J.; Hou, X.; Pan, M.; Zhang, H. Attention-based generative adversarial network in medical imaging: A narrative review. Comput. Biol. Med. 2022, 149, 105948. [Google Scholar] [CrossRef]
- Yang, G.; Lv, J.; Chen, Y.; Huang, J.; Zhu, J. Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives. In Generative Adversarial Learning: Architectures and Applications; Razavi-Far, R., Ruiz-Garcia, A., Palade, V., Schmidhuber, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 305–339. [Google Scholar] [CrossRef]
- Cai, X.; Hou, X.; Yang, G.; Nie, S. [Application of generative adversarial network in magnetic resonance image reconstruction]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2023, 40, 582–588. [Google Scholar] [CrossRef]
- Jhamb, T.K.; Rejathalal, V.; Govindan, V.K. A Review on Image Reconstruction through MRI k-Space Data. Int. J. Image Graph. Signal Process. 2015, 7, 42–59. [Google Scholar] [CrossRef]
- Chandra, S.S.; Bran Lorenzana, M.; Liu, X.; Liu, S.; Bollmann, S.; Crozier, S. Deep learning in magnetic resonance image reconstruction. J. Med. Imaging Radiat. Oncol. 2021, 65, 564–577. [Google Scholar] [CrossRef]
- Dai, Y.; Zhuang, P. Compressed sensing MRI via a multi-scale dilated residual convolution network. Magn. Reson. Imaging 2019, 63, 93–104. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 472–480. [Google Scholar]
- Huang, G.; Zhu, J.; Li, J.; Wang, Z.; Cheng, L.; Liu, L.; Li, H.; Zhou, J. Channel-Attention U-Net: Channel Attention Mechanism for Semantic Segmentation of Esophagus and Esophageal Cancer. IEEE Access 2020, 8, 122798–122810. [Google Scholar] [CrossRef]
- Quan, T.M.; Nguyen-Duc, T.; Jeong, W.K. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss. IEEE Trans. Med. Imaging 2018, 37, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Qin, C.; Schlemper, J.; Caballero, J.; Price, A.N.; Hajnal, J.V.; Rueckert, D. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans. Med. Imaging 2019, 38, 280–290. [Google Scholar] [CrossRef]
Model | Reference | Parameters | Model Size | Batch | Epoch | Training |
---|---|---|---|---|---|---|
U-net | [12] | 2.04 M | 5.12 MB | 16 | 200 | 3.6 h |
CRNN | [52] | 0.32 M | 1.13 MB | 16 | 100 | 2.4 h |
DAGAN | [15] | 98.60 M | 376.16 MB | 16 | 60 | 10.6 h |
RefineGAN | [44] | 40.91 M | 105.34 MB | 16 | 50 | 18.4 h |
ESSGAN | [29] | 35.71 M | 74.50 MB | 16 | 50 | 21.3 h |
DR-CAM-GAN | 15.77 M | 41.84 MB | 16 | 50 | 14.2 h |
Ablation Component | Parameters | Model Size | Batch | Epoch | Training |
---|---|---|---|---|---|
Dilated residual structure | 14.99 M | 38.87 MB | 16 | 50 | 12.9 h |
Channel attention mechanism | 15.68 M | 41.51 MB | 16 | 50 | 13.5 h |
Multi-scale information fusion | 15.74 M | 41.72 MB | 16 | 50 | 14.1 h |
Sampling | Ablation Comparison | SSIM | MSE () | PSNR (dB) |
---|---|---|---|---|
10% | Dilated Residual structure | 0.9059 | 3.27 | 30.62 |
Channel attention mechanism | 0.9157 | 3.04 | 30.91 | |
Multi-scale information fusion | 0.9184 | 2.85 | 31.49 | |
DR-CAM-GAN full model | 0.9213 | 2.76 | 31.76 | |
20% | Dilated Residual structure | 0.9325 | 0.64 | 36.68 |
Channel attention mechanism | 0.9456 | 0.61 | 37.45 | |
Multi-scale information fusion | 0.9479 | 0.55 | 37.63 | |
DR-CAM-GAN full model | 0.9541 | 0.48 | 37.79 | |
30% | Dilated Residual structure | 0.9508 | 0.47 | 37.82 |
Channel attention mechanism | 0.9622 | 0.47 | 38.05 | |
Multi-scale information fusion | 0.9631 | 0.44 | 38.21 | |
DR-CAM-GAN full model | 0.9656 | 0.41 | 38.43 | |
50% | Dilated Residual structure | 0.9786 | 0.18 | 41.13 |
Channel attention mechanism | 0.9804 | 0.15 | 42.62 | |
Multi-scale information fusion | 0.9812 | 0.12 | 43.35 | |
DR-CAM-GAN full model | 0.9847 | 0.11 | 43.90 |
Sampling | Model | SSIM | MSE () | PSNR (dB) |
---|---|---|---|---|
10% | U-net | 0.781 | 4.75 | 28.34 |
CRNN | 0.853 | 3.63 | 29.53 | |
DAGAN | 0.903 | 3.29 | 30.59 | |
RefineGAN | 0.906 | 3.22 | 30.97 | |
ESSGAN | 0.933 | 1.96 | 31.83 | |
DR-CAM-GAN | 0.921 | 2.76 | 31.76 | |
20% | U-net | 0.838 | 3.04 | 31.75 |
CRNN | 0.887 | 1.25 | 33.16 | |
DAGAN | 0.915 | 1.09 | 34.32 | |
RefineGAN | 0.944 | 0.85 | 36.50 | |
ESSGAN | 0.965 | 0.41 | 37.86 | |
DR-CAM-GAN | 0.954 | 0.48 | 37.79 | |
30% | U-net | 0.857 | 1.96 | 33.54 |
CRNN | 0.900 | 0.79 | 35.67 | |
DAGAN | 0.944 | 0.81 | 36.69 | |
RefineGAN | 0.951 | 0.77 | 36.95 | |
ESSGAN | 0.972 | 0.35 | 38.62 | |
DR-CAM-GAN | 0.966 | 0.41 | 38.43 | |
50% | U-net | 0.921 | 1.05 | 36.28 |
CRNN | 0.942 | 0.50 | 38.93 | |
DAGAN | 0.967 | 0.53 | 39.18 | |
RefineGAN | 0.972 | 0.23 | 42.05 | |
ESSGAN | 0.988 | 0.08 | 44.12 | |
DR-CAM-GAN | 0.985 | 0.11 | 43.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, H.; Yang, H.; Li, T.-Q. CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism. Sensors 2023, 23, 7685. https://doi.org/10.3390/s23187685
Li X, Zhang H, Yang H, Li T-Q. CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism. Sensors. 2023; 23(18):7685. https://doi.org/10.3390/s23187685
Chicago/Turabian StyleLi, Xia, Hui Zhang, Hao Yang, and Tie-Qiang Li. 2023. "CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism" Sensors 23, no. 18: 7685. https://doi.org/10.3390/s23187685
APA StyleLi, X., Zhang, H., Yang, H., & Li, T. -Q. (2023). CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism. Sensors, 23(18), 7685. https://doi.org/10.3390/s23187685