Channel Prediction-Based Security Authentication for Artificial Intelligence of Things
Abstract
:1. Introduction
1.1. Existing Methods and Their Challenges
1.2. Contributions
- A Savitzky–Golay filter (SGF) is utilized to preprocess wireless channel estimation, aiming to improve spectrum smoothness and reduce interference. Then, the relationship between time series and dynamic characteristics of wireless channels is exploited to extract fingerprints of IoT devices using the high order cumulant model (HOCM). This SGF-HOCM feature extraction enables the edge computing node to effectively track the channel model during two adjacent communications;
- An intelligent framework is proposed to enable the receiver to verify the reliability of received signals and detect the presence of network fraudsters attempting to compromise security performance. The proposed deep learning scheme employs long short-term memory (LSTM) blocks to predict dynamic fluctuations in channel information elements. This allows the security framework to effectively utilize predicted channel information for authentication instead of relying solely on previously estimated data;
- Simulations are conducted using open datasets from the National Institute of Standards and Technology (NIST). The results demonstrate that the proposed learning algorithms enhance the authentication performance of the system. This improvement makes the method highly valuable for time-varying channel prediction, dynamic feature extraction, and security authentication.
2. System Model
3. Intelligent Prediction-Based Authentication Strategy
3.1. Channel Information Processing Based on SGF-HOCM
3.2. Channel Prediction Based on Two-Layer LSTM
3.3. Prediction-Based Authentication Model
4. Results and Discussions
4.1. Measurement Setup
4.2. Performance of Feature Extraction
4.3. Comparison of Prediction Performance
4.4. Comparison of Performance
4.5. Training Performance
4.6. Authentication Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, A.; Li, Z.; Wu, D.; Tang, T.; Wang, R. Stochastic Peak Age of Information Guarantee for Cooperative Sensing in Internet of Everything. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Tang, T.; Li, L.; Wu, X.; Chen, R.; Li, H.; Lu, G.; Cheng, L. TSA-SCC: Text Semantic-Aware Screen Content Coding with Ultra Low Bitrate. IEEE Trans. Image Process. 2022, 31, 2463–2477. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, N.; Wu, D.; Wang, H.; Wang, R. Energy-Efficient Mobile Edge Computing under Delay Constraints. IEEE Trans. Green Commun. Netw. 2022, 6, 776–786. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Wu, D.; Tang, T.; Wang, R. Fairness-Aware Federated Learning with Unreliable Links in Resource-Constrained Internet of Things. IEEE Internet Things J. 2022, 9, 17359–17371. [Google Scholar] [CrossRef]
- Wasilewska, M.; Bogucka, H.; Poor, H.V. Secure Federated Learning for Cognitive Radio Sensing. IEEE Commun. Mag. 2023, 61, 68–73. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Tang, T.; Zhang, H.; Yang, J. Video caching and scheduling with edge cooperation. Digit. Commun. Netw. 2022; in press. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Huang, J.; Zhang, J.; Li, J.; He, R. Channel Characterization and Modeling for 6G UAV-Assisted Emergency Communications in Complicated Mountainous Scenarios. Sensors 2023, 23, 4998. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, M.; Xia, J.; Wei, T.; Chen, M.; Hu, S. Efficient Federated Learning for Cloud-Based AIoT Applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 2211–2223. [Google Scholar] [CrossRef]
- Rathee, G.; Garg, S.; Kaddoum, G.; Choi, B.J.; Hassan, M.M.; AlQahtani, S.A. TrustSys: Trusted Decision Making Scheme for Collaborative Artificial Intelligence of Things. IEEE Trans. Ind. Inform. 2023, 19, 1059–1068. [Google Scholar] [CrossRef]
- Cheng, S.-M.; Hong, B.-K.; Hung, C.-F. Attack Detection and Mitigation in MEC-Enabled 5G Networks for AIoT. IEEE Internet Things Mag. 2022, 5, 76–81. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.; Zhang, Q.; Zhu, G.; Cheng, L.; Zhang, N. Toward Tailored Models on Private AIoT Devices: Federated Direct Neural Architecture Search. IEEE Internet Things J. 2022, 9, 17309–17322. [Google Scholar] [CrossRef]
- Mitev, M.; Chorti, A.; Poor, H.V.; Fettweis, G.P. What Physical Layer Security Can Do for 6G Security. IEEE Open J. Veh. Technol. 2023, 4, 375–388. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, L.; Li, P.; Ji, X.; Xu, C.; Yu, S.; Zhuang, W. Reinforcement Learning-Based Physical Cross-Layer Security and Privacy in 6G. IEEE Commun. Surv. Tutor. 2023, 25, 425–466. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Liu, J.; Tian, N.; Kato, N. A Survey on Space-Air-Ground-Sea Integrated Network Security in 6G. IEEE Commun. Surv. Tutor. 2022, 24, 53–87. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S. A Deep Learning Assisted Software Defined Security Architecture for 6G Wireless Networks: IIoT Perspective. IEEE Wirel. Commun. 2022, 29, 52–59. [Google Scholar] [CrossRef]
- Mahmood, N.H.; Berardinelli, G.; Khatib, E.J.; Hashemi, R.; Lima, C.D.; Latva-aho, M. A Functional Architecture for 6G Special-Purpose Industrial IoT Networks. IEEE Trans. Ind. Inform. 2023, 19, 2530–2540. [Google Scholar] [CrossRef]
- Nguyen, V.-L.; Lin, P.-C.; Cheng, B.-C.; Hwang, R.-H.; Lin, Y.-D. Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2384–2428. [Google Scholar]
- Xiong, Z.; Cai, Z.; Takabi, D.; Li, W. Privacy Threat and Defense for Federated Learning with Non-i.i.d. Data in AIoT. IEEE Trans. Ind. Inform. 2022, 18, 1310–1321. [Google Scholar] [CrossRef]
- Li, W.; Wang, N.; Jiao, L.; Zeng, K. Physical Layer Spoofing Attack Detection in MmWave Massive MIMO 5G Networks. IEEE Access 2021, 9, 60419–60432. [Google Scholar] [CrossRef]
- Qiu, X.; Jiang, T.; Wu, S.; Hayes, M. Physical Layer Authentication Enhancement Using a Gaussian Mixture Model. IEEE Access 2018, 6, 53583–53592. [Google Scholar] [CrossRef]
- Wang, X.; Jia, P.; Shen, X.S.; Poor, H.V. Intelligent and Low Overhead Network Synchronization for Large-Scale Industrial IoT Systems in the 6G Era. IEEE Netw. 2022; early access. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Tomasin, S.; Al-Dhahir, N. Lightweight Group Authentication for Decentralized Edge Collaboration. IEEE Commun. Mag. 2022, 60, 124–129. [Google Scholar] [CrossRef]
- Fang, H.; Xiao, Z.; Wang, X.; Al-Dhahir, N. Lightweight Flexible Group Authentication Utilizing Historical Collaboration Process Information. IEEE Trans. Commun. 2023, 71, 2260–2273. [Google Scholar] [CrossRef]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE 2022, 110, 712–734. [Google Scholar] [CrossRef]
- Ferdowsi, A.; Saad, W. Deep Learning for Signal Authentication and Security in Massive Internet-of-Things Systems. IEEE Trans. Commun. 2019, 67, 1371–1387. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xu, X.; Li, D.; Qi, L.; Dai, F.; Dou, W.; Ni, Q. Privacy Preservation for Federated Learning with Robust Aggregation in Edge Computing. IEEE Internet Things J. 2022, 10, 7343–7355. [Google Scholar] [CrossRef]
- Gao, N.; Qin, Z.; Jing, X.; Ni, Q.; Jin, S. Anti-Intelligent UAV Jamming Strategy via Deep Q Networks. IEEE Trans. Commun. 2020, 68, 569–581. [Google Scholar] [CrossRef]
- Gao, N.; Ni, Q.; Feng, D.; Jing, X.; Cao, Y. Physical Layer Authentication under Intelligent Spoofing in Wireless Sensor Networks. Signal Process. 2020, 166, 107272. [Google Scholar] [CrossRef]
- Wang, N.; Li, W.; Jiao, L.; Alipour-Fanid, A.; Xiang, T.; Zeng, K. Orientation and Channel-Independent RF Fingerprinting for 5G IEEE 802.11ad Devices. IEEE Internet Things J. 2022, 9, 9036–9048. [Google Scholar] [CrossRef]
- Wang, N.; Jiao, L.; Wang, P.; Li, W.; Zeng, K. Exploiting Beam Features for Spoofing Attack Detection in mmWave 60-GHz IEEE 802.11ad Networks. IEEE Trans. Wirel. Commun. 2021, 20, 3321–3335. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, K.; Lin, S. Federated Graph Neural Network for Fast Anomaly Detection in Controller Area Networks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1566–1579. [Google Scholar] [CrossRef]
- Xing, Y.; Hu, A.; Zhang, J.; Peng, L.; Wang, X. Design of A Channel Robust Radio Frequency Fingerprint Identification Scheme. IEEE Internet Things J. 2022, 10, 6946–6959. [Google Scholar] [CrossRef]
- Benaddi, H.; Jouhari, M.; Ibrahimi, K.; Benslimane, A.; Amhoud, E.M. Adversarial Attacks Against IoT Networks using Conditional GAN based Learning. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 2788–2793. [Google Scholar]
- Guo, D.; Cao, K.; Xiong, J.; Ma, D.; Zhao, H. A Lightweight Key Generation Scheme for the Internet of Things. IEEE Internet Things J. 2021, 8, 12137–12149. [Google Scholar] [CrossRef]
- Junejo, A.K.; Benkhelifa, F.; Wong, B.; Mccann, J.A. LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet Things J. 2022, 9, 4110–4124. [Google Scholar] [CrossRef]
- Senigagliesi, L.; Baldi, M.; Gambi, E. Comparison of Statistical and Machine Learning Techniques for Physical Layer Authentication. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1506–1521. [Google Scholar] [CrossRef]
- Ghaddar, N.; Kim, Y.-H.; Milstein, L.B.; Ma, L.; Yi, B.K. Joint Channel Estimation and Coding over Channels with Memory Using Polar Codes. IEEE Trans. Commun. 2021, 69, 6575–6589. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkatesan, R.; Dobre, O.A.; Li, C. Efficient Estimation and Prediction for Sparse Time-Varying Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2020, 45, 1112–1125. [Google Scholar] [CrossRef]
- Vinogradova, J.; Fodor, G.; Hammarberg, P. On Estimating the Autoregressive Coefficients of Time-Varying Fading Channels. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Mattu, S.R.; Theagarajan, L.N.; Chockalingam, A. Deep Channel Prediction: A DNN Framework for Receiver Design in Time-Varying Fading Channels. IEEE Trans. Veh. Technol. 2022, 71, 6439–6453. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, Y.; Zhu, X.; Dutkiewicz, E.; Zhou, Z.; Jiang, T. Device-Free Sensing for Personnel Detection in a Foliage Environment. IEEE Geosci. Remote Sens. Lett. 2017, 14, 921–925. [Google Scholar] [CrossRef]
- Gwon, H.; Lee, C.; Keum, R.; Choi, H. Network Intrusion Detection based on LSTM and Feature Embedding. arXiv 2019, arXiv:1911.11552. [Google Scholar]
- Kumar, S.; Kumar, D.; Donta, P.K.; Amgoth, T. Land Subsidence Prediction using Recurrent Neural Networks. Stoch. Environ. Res. Risk Assess. 2021, 36, 373–388. [Google Scholar] [CrossRef]
- Candell, R.; Remley, K.A.; Moaveri, N. Radio frequency measurements for selected manufacturing and industrial environments. NIST Tech. Rep. 2016. [Google Scholar] [CrossRef]
Parameters | Representations |
---|---|
Sigmoid function | |
tanh | Hyperbolic tangent function |
Input gate | |
Forgot gate | |
Output gate | |
State of current memory cell at time t | |
Candidate value for state at time t | |
Output value | |
Input value | |
, , , | Weights |
, , , | Weights |
, , , | Bias vectors of three gates |
∗ | Element-wise multiplication |
Parameters | Value |
---|---|
LSTM | 2 |
Epoch | 25 |
Batch size | 32 |
Time step | 10 |
Unit | 50 |
Activation function | Relu |
Optimizer | adam |
Loss function | mean_squared_error |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Yu, J.; Zhuang, W.; Li, G.; Sun, X. Channel Prediction-Based Security Authentication for Artificial Intelligence of Things. Sensors 2023, 23, 6711. https://doi.org/10.3390/s23156711
Qiu X, Yu J, Zhuang W, Li G, Sun X. Channel Prediction-Based Security Authentication for Artificial Intelligence of Things. Sensors. 2023; 23(15):6711. https://doi.org/10.3390/s23156711
Chicago/Turabian StyleQiu, Xiaoying, Jinwei Yu, Wenying Zhuang, Guangda Li, and Xuan Sun. 2023. "Channel Prediction-Based Security Authentication for Artificial Intelligence of Things" Sensors 23, no. 15: 6711. https://doi.org/10.3390/s23156711
APA StyleQiu, X., Yu, J., Zhuang, W., Li, G., & Sun, X. (2023). Channel Prediction-Based Security Authentication for Artificial Intelligence of Things. Sensors, 23(15), 6711. https://doi.org/10.3390/s23156711