The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems
Abstract
:1. Introduction
2. Related Work
2.1. Realized Prototype of a Redundant Inertial Measurement Unit
2.2. Artificial Intelligence for Inertial Sensing
3. Proposed ANN-Based Navigation Solutions
- Data preprocessing;
- Neural Networks (NN) models developing;
- Model’s training and validation;
- Hyper-parameter tuning.
3.1. Data Preprocessing
- Normalizing the dataset;
- Removing outliers with the z-score technique;
- Split the dataset into two parts: train and test.
- In a NN, the loss function quantifies the difference between the expected outcome and the outcome produced by the model. From the loss function, we can derive the gradients which are used to update the weights. The average overall losses constitute the cost. A loss function based on the MAE was used for all the developed models;
- To assess the prediction performance of the models, two performance factors (MAE and RMSE) have been taken into account to the purpose, i.e., (i) the concurrence between estimated and nominal navigation parameters, and (ii) the number of parameters to be determined and trained for the ANN model.
- An optimization algorithm (optimizer) finds the value of the parameters (weights) that minimize the error when mapping inputs to outputs. These optimizers widely increase the accuracy and speed training of the model as well. In the design of our NNs, we selected Adam [44] as the optimizer. Adam is an alternative optimization algorithm that provides more efficient weights by running repeated cycles of “adaptive moment estimation.” Adam extends on stochastic gradient descent to solve non-convex problems faster while using fewer resources than many other optimization programs;
- The learning rate is a tuning parameter of the optimization algorithm that controls the update of the network weights, moving towards the minimum of the loss function. Choosing the learning rate is challenging in that a too-small value may imply a time-consuming training process, whereas a too-large value may result in achieving learning a sub-optimal set of weights too fast since an unstable training process;
- The batch size is a hyperparameter of gradient descent-based optimizers that control the number of training samples to work through before the model’s internal parameters are updated;
- The number of epochs is a hyperparameter of gradient descent-based optimizers that control the number of complete passes through the training dataset.
3.2. Dense Neural Network Model
3.3. Conv1D Model
3.4. LSTM Model
3.5. Dense Model Optimization through Meta-Heuristic Optimization Techniques
4. Results
4.1. Dense Model Performance
4.2. Conv1D Model Performance
4.3. LSTM Model Performance
4.4. Performances of the Dense Model with Particle Swarm Optimization Algorithm
- -
- The reduction of the error between the prediction and the target;
- -
- The NN’s impact on memory footprint;
4.5. Trajectories Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klomp, M.; Jonasson, M.; Laine, L.; Henderson, L.; Regolin, E.; Schumi, S. Trends in Vehicle Motion Control for Automated Driving on Public Roads. Veh. Syst. Dyn. 2019, 57, 1028–1061. [Google Scholar] [CrossRef]
- Scott, J.E.; Scott, C.H. Models for Drone Delivery of Medications and Other Healthcare Items. Int. J. Healthc. Inf. Syst. Inform. 2018, 13, 376–392. [Google Scholar] [CrossRef]
- Laksham, K. Unmanned Aerial Vehicle (Drones) in Public Health: A SWOT Analysis. J. Fam. Med. Prim. Care 2019, 8, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Zaarane, A.; Slimani, I.; Al Okaishi, W.; Atouf, I.; Hamdoun, A. Distance Measurement System for Autonomous Vehicles Using Stereo Camera. Array 2020, 5, 100016. [Google Scholar] [CrossRef]
- Carsten, O.; Martens, M.H. How Can Humans Understand Their Automated Cars? HMI Principles, Problems and Solutions. Cogn. Technol. Work. 2019, 21, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, A.T.; Papa, I.; Squillace, A. Influence of Fibre Fill Pattern and Stacking Sequence on Open-Hole Tensile Behaviour in Additive Manufactured Fibre-Reinforced Composites. Materials 2023, 16, 2411. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, A.T.; Amirabdollahian, S.; Perini, M.; Bosetti, P.; Squillace, A. Direct Laser Deposition for Tailored Structure. In Proceedings of the ESAFORM 2021, Virtual, 14 April 2021. [Google Scholar]
- Isgandarov, İ.A.; Bakhshiyev, H.E. The application of mems technology to determine an aircraft orientation. Bull. Civ. Aviat. Acad. 2021, 1, 14–19. [Google Scholar]
- Schmidt, G.T. INS/GPS Technology Trends. Technology 2011, 116, 1–16. [Google Scholar]
- Benser, E.T. Trends in Inertial Sensors and Applications. In Proceedings of the 2nd IEEE International Symposium on Inertial Sensors and Systems, IEEE ISISS 2015—Proceedings, Hapuna Beach, HI, USA, 23–26 March 2015. [Google Scholar]
- De Alteriis, G.; Silvestri, A.T.; Conte, C.; Bottino, V.; Caputo, E.; Squillace, A.; Accardo, D.; Schiano Lo Moriello, R. Innovative Fusion Strategy for MEMS Redundant-IMU Exploiting Custom 3D Components. Sensors 2023, 23, 2508. [Google Scholar] [CrossRef]
- Eichstädt, S.; Vedurmudi, A.P.; Gruber, M.; Hutzschenreuter, D. Fundamental Aspects in Sensor Network Metrology. Acta IMEKO 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Han, S.; Meng, Z.; Omisore, O.; Akinyemi, T.; Yan, Y. Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement—A Review. Micromachines 2020, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- De Alteriis, G.; Caputo, E.; Moriello, R.S. Lo On the Suitability of Redundant Accelerometers for the Implementation of Smart Oscillation Monitoring System: Preliminary Assessment. Acta IMEKO 2023, 12, 1–9. [Google Scholar] [CrossRef]
- Silvestri, A.T.; Bosetti, P.; Squillace, A. Laser-Directed Energy Deposition of H13: Processing Window and Improved Characterization Procedures. Mater. Manuf. Process. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Iadarola, G.; Disha, D.; De Santis, A.; Spinsante, S.; Gambi, E. Global Positioning System Measurements: Comparison of IoT Wearable Devices. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 213–218. [Google Scholar]
- Navidi, N.; Landry, R. A New Perspective on Low-Cost Mems-Based AHRS Determination. Sensors 2021, 21, 1383. [Google Scholar] [CrossRef]
- Narasimhappa, M.; Mahindrakar, A.D.; Guizilini, V.C.; Terra, M.H.; Sabat, S.L. MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering. IEEE Sens. J. 2020, 20, 250–260. [Google Scholar] [CrossRef]
- Del Pizzo, S.; Papa, U.; Gaglione, S.; Troisi, S.; Del Core, G. A Vision-Based Navigation System for Landing Procedure. Acta IMEKO 2018, 7, 102–109. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; IEEE Aerospace and Electronic Systems Magazine: Piscataway, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved Vehicle Localization Using On-Board Sensors and Vehicle Lateral Velocity. IEEE Sens. J. 2022, 22, 6818–6831. [Google Scholar] [CrossRef]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood, MA, USA, 2003; ISBN 1580538517. [Google Scholar]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2022, 31, 179–192. [Google Scholar] [CrossRef]
- Tong, X.; Li, Z.; Han, G.; Liu, N.; Su, Y.; Ning, J.; Yang, F. Adaptive EKF Based on HMM Recognizer for Attitude Estimation Using MEMS MARG Sensors. IEEE Sens. J. 2018, 18, 3299–3310. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, H.; Sun, Y.; Zhu, Y.; Zhuang, X.; Jia, J.; Zhang, P. An Optimal Enhanced Kalman Filter for a ZUPT-Aided Pedestrian Positioning Coupling Model. Sensors 2018, 18, 1404. [Google Scholar] [CrossRef] [Green Version]
- De Alteriis, G.; Conte, C.; Accardo, D.; Rufino, G.; Schiano Lo Moriello, R.; Alvarez, O.H. Advanced Technique to Support ADS System Failure Exploiting MEMS Inertial Sensors. In Proceedings of the AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, San Diego, CA, USA, 3–7 January 2022; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2022. [Google Scholar]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An Automated Driving Systems Data Acquisition and Analytics Platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Niu, X.; Zhuang, Y.; Gao, Z.; Hu, X.; El-Sheimy, N. Inertial Sensing Meets Machine Learning: Opportunity or Challenge? IEEE Trans. Intell. Transp. Syst. 2022, 23, 9995–10011. [Google Scholar] [CrossRef]
- De Alteriis, G.; Accardo, D.; Conte, C.; Schiano Lo Moriello, R. Performance Enhancement of Consumer-Grade MEMS Sensors through Geometrical Redundancy. Sensors 2021, 21, 4851. [Google Scholar] [CrossRef]
- IEEE Std 647-2006; IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros. IEEE: New York, NY, USA, 2006. [CrossRef]
- Zha, F.; Hu, B.Q.; Liu, J. Prediction of Gyro Motor’s State Based on Grey Theory and BP Neural Network. Zhongguo Guanxing Jishu Xuebao/J. Chin. Inert. Technol. 2010, 3, 87–90. [Google Scholar] [CrossRef]
- Chong, S.; Rui, S.; Jie, L.; Xiaoming, Z.; Jun, T.; Yunbo, S.; Jun, L.; Huiliang, C. Temperature Drift Modeling of MEMS Gyroscope Based on Genetic-Elman Neural Network. Mech. Syst. Signal Process. 2016, 72–73, 897–905. [Google Scholar] [CrossRef]
- Grekov, A.N.; Kabanov, A.A. Machine Learning Boosting Algorithms for Determining Euler Angles in an Inertial Navigation System. In Proceedings of the 2022 International Russian Automation Conference, Sochi, Russia, 4–10 September 2022. [Google Scholar]
- Eskofier, B.M.; Lee, S.I.; Daneault, J.F.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken, J.; Kautz, T.; et al. Recent Machine Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for Parkinson’s Disease Assessment. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Gonzalez, R.; Fiacchini, M.; Iagnemma, K. Slippage Prediction for Off-Road Mobile Robots via Machine Learning Regression and Proprioceptive Sensing. Rob. Auton. Syst. 2018, 105, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, Q.; Niu, X. Estimate the Pitch and Heading Mounting Angles of the IMU for Land Vehicular GNSS/INS Integrated System. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6503–6515. [Google Scholar] [CrossRef]
- Jaradat, M.A.K.; Abdel-Hafez, M.F. Enhanced, Delay Dependent, Intelligent Fusion for Ins/Gps Navigation System. IEEE Sens. J. 2014, 14, 1545–1554. [Google Scholar] [CrossRef]
- Rambach, J.R.; Tewari, A.; Pagani, A.; Stricker, D. Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose Estimation. In Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR, Merida, Mexico, 19–23 September 2016. [Google Scholar]
- Li, Z.; Wang, J.; Li, B.; Gao, J.; Tan, X. GPS/INS/Odometer Integrated System Using Fuzzy Neural Network for Land Vehicle Navigation Applications. J. Navig. 2014, 67, 967–983. [Google Scholar] [CrossRef] [Green Version]
- Jwo, D.J.; Chuang, C.H.; Yang, J.Y.; Lu, Y.H. Neural Network Assisted Ultra-Tightly Coupled GPS/INS Integration for Seamless Navigation. In Proceedings of the 2012 12th International Conference on ITS Telecommunications, ITST, Taipei, Taiwan, 5–8 November 2012. [Google Scholar]
- Bisong, E. Introduction to Scikit-Learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 215–229. ISBN 978-1-4842-4470-8. [Google Scholar]
- Everitt, B.; Hothorn, T. An Introduction to Applied Multivariate Analysis with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 1441996508. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Verma, Y. A Complete Understanding of Dense Layers in Neural Networks. Analytics India Magazine, 19 September 2021. [Google Scholar]
- Takekawa, A.; Kajiura, M.; Fukuda, H. Role of Layers and Neurons in Deep Learning With the Rectified Linear Unit. Cureus 2021, 13, 18866. [Google Scholar] [CrossRef]
- Kelley, H.J. Gradient Theory of Optimal Flight Paths. ARS J. 1960, 30, 947–954. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Fukushima, K. Artificial Vision by Deep CNN Neocognitron. IEEE Trans. Syst. Man. Cybern. Syst. 2021, 51, 76–90. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML, Lille, France, 6–11 July 2015. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short Term Memory. Neural Computation. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Macedo, I. Implementing the Particle Swarm Optimization (PSO) Algorithm in Python. 2018. Available online: https://medium.com/analytics-vidhya/implementing-particleswarm-optimization-pso-algorithm-in-python-9efc2eb179a6 (accessed on 10 January 2023).
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Bonavolonta, F.; Di Noia, L.P.; Liccardo, A.; Tessitore, S.; Lauria, D. A PSO-MMA Method for the Parameters Estimation of Interarea Oscillations in Electrical Grids. IEEE Trans. Instrum. Meas. 2020, 69, 8853–8865. [Google Scholar] [CrossRef]
Mean | Std | Min | 25% | 50% | 75% | Max | |
---|---|---|---|---|---|---|---|
Lat [rad] | 0.7125 | 0.0026 | 0.7124 | 0.7125 | 0.7125 | 0.7126 | 0.7126 |
Lon [rad] | 0.2476 | 0.0028 | 0.2474 | 0.2475 | 0.2476 | 0.2477 | 0.2478 |
Alt [m] | 20.6002 | 14.8431 | 0.0003 | 9.0984 | 18.5825 | 28.5465 | 61.5073 |
Heading [rad] | −0.4692 | 1.6914 | −3.1400 | −1.6821 | 0.0069 | 0.7879 | 3.1400 |
Pitch [rad] | 0.0069 | 0.0998 | −0.2341 | −0.0696 | −0.0095 | 0.1116 | 0.2155 |
Roll [rad] | 0.1519 | 3.0546 | −3.1415 | −3.0377 | 2.9960 | 3.0627 | 3.1415 |
VX [m/s] | −0.1573 | 5.3205 | −10.5311 | −4.5739 | −1.4232 | 5.3572 | 10.1318 |
VY [m/s] | 0.1151 | 5.7372 | −12.9115 | −3.6694 | −0.0372 | 5.8233 | 10.4455 |
VZ [m/s] | −1.4146 | 1.2136 | −4.9909 | −2.1293 | −1.1552 | −0.5929 | 1.4289 |
Model | Optimizer: Adam | Loss: Mean Absolute Error | |
---|---|---|---|
Training Hyper-Parameters | Batch Size: 185 | Learning Rate: 0.001 | Epochs: 5000 |
Layer | Shape | Param | |
Dense_1 | 335 | 3350 | |
Dense_2 | 479 | 160,944 | |
Dense_3 | 579 | 277,920 | |
Dense out | 9 | 5220 | |
Total params | 447,434 | ||
Trainable params | 447,434 | ||
Non-trainable params | 0 |
Model. | Optimizer: Adam | Loss: Mean Absolute Error | |
---|---|---|---|
Training Hyper-Parameters | Batch Size: 152 | Learning Rate: 0.008 | Epochs: 5000 |
Layer | Shape | Param | |
Conv1D_1 | 256 | 1024 | |
Batch_Normalization_1 | 256 | 768 | |
Conv1D_2 | 128 | 65,664 | |
Batch_Normalization_2 | 128 | 384 | |
Max_Poolling | 128 | 0 | |
Flatten | 384 | 0 | |
Dense_1 | 128 | 49,280 | |
Dense_2 | 9 | 1161 | |
Total params | 118,281 | ||
Trainable params | 117,513 | ||
Non-trainable params | 768 |
Model | Optimizer: Adam | Loss: Mean Absolute Error | |
---|---|---|---|
Training Hyper-Parameters | Batch Size: 200 | Learning Rate: 0.005 | Epochs: 5000 |
Layer | Shape | Param | |
LSTM | 200 | 161,600 | |
Dense_1 | 100 | 20,100 | |
Dense_out | 100 | 909 | |
Total params | 182,609 | ||
Trainable params | 182,609 | ||
Non-trainable params | 0 |
Model | Optimizer: Adam | Loss: Mean Absolute Error | |
---|---|---|---|
Training Hyper-Parameters | Batch Size: 185 | Learning Rate: 0.00107 | Epochs: 5000 |
Layer | Shape | Param | |
Dense_1 | 216 | 2160 | |
Dense_2 | 394 | 85,498 | |
Dense_3 | 344 | 135,880 | |
Dense_out | 9 | 3105 | |
Total params | 226,643 | ||
Trainable params | 226,643 | ||
Non-trainable params | 0 |
Parameter | Cube | Dense | Conv1D | LSTM | Opt. Dense |
---|---|---|---|---|---|
Lat [m] | 9.8851 | 1.9361 | 4.8929 | 1.9916 | 1.5458 |
Lon [m] | 10.4388 | 2.8137 | 0.6659 | 2.8589 | 1.5778 |
Alt [m] | 35.64075 | 0.17919 | 0.66060 | 0.24496 | 0.16951 |
Heading [rad] | 0.57497 | 0.04966 | 0.02606 | 0.09868 | 0.00974 |
Pitch [rad] | 0.07879 | 0.00725 | 0.00587 | 0.00722 | 0.00648 |
Roll [rad] | 5.40247 | 0.38673 | 0.39741 | 0.41408 | 0.35528 |
Vx [m/s] | 3.85137 | 0.08497 | 0.21840 | 0.09905 | 0.09356 |
Vy [m/s] | 3.28942 | 0.07638 | 0.19832 | 0.07948 | 0.07568 |
Vz [m/s] | 3.10396 | 0.03012 | 0.06646 | 0.02938 | 0.02800 |
MAE | 0.17360 | 0.00366 | 0.00548 | 0.00524 | 0.00295 |
Memory FP | N/A | 447,434 | 118,281 | 182,609 | 226,643 |
Navigation Parameters RMSE | 5.75872 | 0.10847 | 0.16087 | 0.12560 | 0.07784 |
Latitude [rad] | Longitude [rad] | Altitude [m] | Heading [rad] | Pitch [rad] | Roll [rad] | V(X) [m/s] | V(Y) [m/s] | V(Z) [m/s] | |
---|---|---|---|---|---|---|---|---|---|
Input | 0.7125251 | 0.2477015 | 41.25674 | 0.58036 | 0.05838 | 3.03860 | 6.22518 | 0.91983 | 4.12185 |
Predict | 0.7125225 | 0.2477014 | 32.4903 | 0.48726 | 0.11589 | 3.08995 | 11.67100 | 1.32938 | 1.28093 |
Target | 0.7125224 | 0.2477013 | 32.52912 | 0.47043 | 0.11594 | 3.08365 | 11.62465 | 1.34654 | 1.27595 |
Latitude [rad] | Longitude [rad] | Altitude [m] | Heading [rad] | Pitch [rad] | Roll [rad] | V(X) [m/s] | V(Y) [m/s] | V(Z) [m/s] | |
---|---|---|---|---|---|---|---|---|---|
Input | 0.7125251 | 0.2477015 | 41.25674 | 0.58036 | 0.05838 | 3.03860 | 6.22518 | 0.91983 | 4.12185 |
Predict | 0.7125241 | 0.2477015 | 33.28172 | 0.47928 | 0.11387 | 3.06908 | 11.79970 | 1.40192 | 1.29300 |
Target | 0.7125224 | 0.2477013 | 32.52912 | 0.47043 | 0.11594 | 3.08365 | 11.62465 | 1.34654 | 1.27595 |
Latitude [rad] | Longitude [rad] | Altitude [m] | Heading [rad] | Pitch [rad] | Roll [rad] | V(X) [m/s] | V(Y) [m/s] | V(Z) [m/s] | |
---|---|---|---|---|---|---|---|---|---|
Input | 0.7125251 | 0.2477015 | 41.25674 | 0.58036 | 0.05838 | 3.03860 | 6.22518 | 0.91983 | 4.12185 |
Predict | 0.7125233 | 0.2477015 | 33.01997 | 0.48281 | 0.11419 | 3.07922 | 11.55830 | 1.09890 | 1.26482 |
Target | 0.7125224 | 0.2477013 | 32.52912 | 0.47043 | 0.11594 | 3.08365 | 11.62465 | 1.34654 | 1.27595 |
Models | RMSE |
---|---|
Dense | 0.00366 |
Conv1D | 0.00548 |
LSTM | 0.00524 |
Dense with PSO | 0.00295 |
Memory Footprint | Parameters |
---|---|
Dense | 447,434 |
Conv1D | 117,513 |
LSTM | 182,609 |
Dense with PSO | 226,643 |
PF Position [m] | PF Attitude [deg] | PF Velocity [m/s] | |
---|---|---|---|
Prediction | 1.142 | 0.893 | 0.0825 |
Cube | 37.758 | 90.23 | 5.895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Alteriis, G.; Ruggiero, D.; Del Prete, F.; Conte, C.; Caputo, E.; Bottino, V.; Carone Fabiani, F.; Accardo, D.; Schiano Lo Moriello, R. The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems. Sensors 2023, 23, 6127. https://doi.org/10.3390/s23136127
de Alteriis G, Ruggiero D, Del Prete F, Conte C, Caputo E, Bottino V, Carone Fabiani F, Accardo D, Schiano Lo Moriello R. The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems. Sensors. 2023; 23(13):6127. https://doi.org/10.3390/s23136127
Chicago/Turabian Stylede Alteriis, Giorgio, Davide Ruggiero, Francesco Del Prete, Claudia Conte, Enzo Caputo, Verdiana Bottino, Filippo Carone Fabiani, Domenico Accardo, and Rosario Schiano Lo Moriello. 2023. "The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems" Sensors 23, no. 13: 6127. https://doi.org/10.3390/s23136127
APA Stylede Alteriis, G., Ruggiero, D., Del Prete, F., Conte, C., Caputo, E., Bottino, V., Carone Fabiani, F., Accardo, D., & Schiano Lo Moriello, R. (2023). The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems. Sensors, 23(13), 6127. https://doi.org/10.3390/s23136127