Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- reported pain or injuries to the lower limbs within the previous six months,
- prior foot surgery,
- congenital or acquired foot deformities upon clinical examination,
- any disability that might affect the gait (e.g., flat feet, use of walking aids, visual or hearing impairment, or spine problems that might affect gait).
2.2. Experimental Setting
2.3. Data Extraction
- Spatial parameters
- Step length (m), Anterior-posterior distance from the heel of one footprint to the heel of the opposite footprint;
- Stride length (m), Anterior-posterior distance between heels of two consecutive footprints of the same foot (left to left, right to right).
- Temporal parameters
- Stance time (s), the time period between the initial contact and the consecutive end contact of the same foot;
- Swing time (s), the time period between the end contact and the consecutive initial contact of the same foot;
- Stride time (s), the time elapsed between the initial contacts of two consecutive footfalls of the same foot;
- Cadence (strides/min), the total number of full cycles taken within a given period of time.
- Spatiotemporal parameters
- Velocity (m/s), the average speed of the gait cycle.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bugané, F.; Benedetti, M.G.; Casadio, G.; Attala, S.; Biagi, F.; Manca, M.; Leardini, A. Estimation of Spatial-Temporal Gait Parameters in Level Walking Based on a Single Accelerometer: Validation on Normal Subjects by Standard Gait Analysis. Comput. Methods Programs Biomed. 2012, 108, 129–137. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-Retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-Temporal Parameters of the Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait Photoelectric System for the Assessment of Spatiotemporal Gait Parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological Advancements in the Analysis of Human Motion and Posture Management through Digital Devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The Use of Wearable Devices for Walking and Running Gait Analysis Outside of the Lab: A Systematic Review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors 2017, 17, 1522. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Cappozzo, A.; Dellacroce, U.; Leardini, A.; Chiari, L. Human Movement Analysis Using StereophotogrammetryPart 1: Theoretical Background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef]
- Leusmann, P.; Mollering, C.; Klack, L.; Kasugai, K.; Ziefle, M.; Rumpe, B. Your Floor Knows Where You Are: Sensing and Acquisition of Movement Data. In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management, Lulea, Sweden, 6–9 June 2011; pp. 61–66. [Google Scholar]
- Middleton, L.; Buss, A.A.; Bazin, A.; Nixon, M.S. A Floor Sensor System for Gait Recognition. In Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID’05), Buffalo, NY, USA, 17–18 October 2005; pp. 171–176. [Google Scholar]
- Camomilla, V.; Dumas, R.; Cappozzo, A. Human Movement Analysis: The Soft Tissue Artefact Issue. J. Biomech. 2017, 62, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.; Blanco, T.; Marín, J.J.; Moreno, A.; Martitegui, E.; Aragüés, J.C. Integrating a Gait Analysis Test in Hospital Rehabilitation: A Service Design Approach. PLoS ONE 2019, 14, e0224409. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C. Internal, External, and Ecological Validity in Research Design, Conduct, and Evaluation. Indian. J. Psychol. Med. 2018, 40, 498–499. [Google Scholar] [CrossRef]
- Gomez Bernal, A.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E. Reliability of the OptoGait Portable Photoelectric Cell System for the Quantification of Spatial-Temporal Parameters of Gait in Young Adults. Gait Posture 2016, 50, 196–200. [Google Scholar] [CrossRef]
- Applications of Gait Analysis in Pediatric Orthopaedics: Current Orthopaedic Practice May 2016 |PDF| Anatomical Terms Of Motion|Foot. Available online: https://www.scribd.com/document/519199622/Applications-of-gait-analysis-in-pediatric-19 (accessed on 9 January 2023).
- Chauvel, G.; Palluel, E.; Brandao, A.; Barbieri, G.; Nougier, V.; Olivier, I. Attentional Load of Walking in Children Aged 7–12 and in Adults. Gait Posture 2017, 56, 95–99. [Google Scholar] [CrossRef]
- Ebbeling, C.J.; Hamill, J.; Freedson, P.S.; Rowland, T.W. An Examination of Efficiency during Walking in Children and Adults. Pediatr. Exerc. Sci. 1992, 4, 36–49. Available online: https://journals.humankinetics.com/view/journals/pes/4/1/article-p36.xml (accessed on 9 January 2023). [CrossRef]
- Favela, J.; Tentori, M.; Gonzalez, V.M. Ecological Validity and Pervasiveness in the Evaluation of Ubiquitous Computing Technologies for Health Care. Int. J. Hum.–Comput. Interact. 2010, 26, 414–444. Available online: https://www.tandfonline.com/doi/abs/10.1080/10447311003719896 (accessed on 9 January 2023). [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.Á.; Ramirez-Campillo, R.; Roche-Seruendo, L.E. Agreement between Spatiotemporal Parameters from a Photoelectric System with Different Filter Settings and High-Speed Video Analysis during Running on a Treadmill at Comfortable Velocity. J. Biomech. 2019, 93, 213–219. [Google Scholar] [CrossRef]
- Lee, M.; Song, C.; Lee, K.; Shin, D.; Shin, S. Agreement between the Spatio-Temporal Gait Parameters from Treadmill-Based Photoelectric Cell and the Instrumented Treadmill System in Healthy Young Adults and Stroke Patients. Med. Sci. Monit. 2014, 20, 1210–1219. [Google Scholar] [CrossRef] [Green Version]
- Healy, A.; Linyard-Tough, K.; Chockalingam, N. Agreement Between the Spatiotemporal Gait Parameters of Healthy Adults From the OptoGait System and a Traditional Three-Dimensional Motion Capture System. J. Biomech. Eng. 2019, 141, 014501. [Google Scholar] [CrossRef]
- Carbajales-Lopez, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Benito-De Pedro, M.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; San Antolín, M. The OptoGait Motion Analysis System for Clinical Assessment of 2D Spatio-Temporal Gait Parameters in Young Adults: A Reliability and Repeatability Observational Study. Appl. Sci. 2020, 10, 3726. [Google Scholar] [CrossRef]
- Grieve, D.W.; Gear, R.J. The Relationships between Length of Stride, Step Frequency, Time of Swing and Speed of Walking for Children and Adults. Ergonomics 1966, 9, 379–399. [Google Scholar] [CrossRef] [PubMed]
- Norlin, R.; Odenrick, P.; Sandlund, B. Development of Gait in the Normal Child. J. Pediatr. Orthop. 1981, 1, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Román, P.Á.; Párraga-Montilla, J.A.; Robles-Fuentes, A.; Roche-Seruendo, L.E.; Lucena-Zurita, M.; Muñoz-Jiménez, M.; Manjón-Pozas, D.; Salas-Sánchez, J.; da Conceição, F.A.; Consuegra González, P.J. Reference Values of Spatial and Temporal Gait Parameters in a Contemporary Sample of Spanish Preschool Children: A Cross-Sectional Study. Children 2022, 9, 1150. [Google Scholar] [CrossRef] [PubMed]
- Davis III, R.B.; Ounpuu, S.; Tyburski, D.; Gage, J.R. A Gait Analysis Data Collection and Reduction Technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Mcgraw, K.; Wong, S.P. Forming Inferences About Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Franco, F.; Di Napoli, A. Agreement Between Quantitative Measurements: The Bland-Altman Method. G. Di Tec. Nefrol. E Dial. 2017, 29, 59–61. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Oeffinger, D.; Bagley, A.; Rogers, S.; Gorton, G.; Kryscio, R.; Abel, M.; Damiano, D.; Barnes, D.; Tylkowski, C. Outcome Tools Used for Ambulatory Children with Cerebral Palsy: Responsiveness and Minimum Clinically Important Differences. Dev. Med. Child. Neurol. 2008, 50, 918–925. [Google Scholar] [CrossRef]
- Hallman-Cooper, J.L.; Rocha Cabrero, F. Cerebral Palsy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
Descriptive Statistics (Median [Interquartile Range]) | |
---|---|
Age (years) | 9 [4] |
Height (cm) | 133 [27] |
Weight (kg) | 32 [20] |
Parameters (Units) | Descriptive Statistics (Median [Interquartile Range]) |
---|---|
Stride Time L (s) | 0.970 [0.122] |
Stride Time R (s) | 0.965 [0.107] |
Stance Time L (s) | 0.580 [0.094] |
Stance Time R (s) | 0.562 [0.085] |
Swing Time L (s) | 0.405 [0.046] |
Swing Time R (s) | 0.420 [0.045] |
Cadence (steps/min) | 124.0 [15.53] |
Stride Length L (m) | 1.184 [0.164] |
Stride Length R (m) | 1.157 [0.179] |
Step Length L (m) | 0.571 [0.092] |
Step Length R (m) | 0.584 [0.062] |
Velocity (m/s) | 1.190 [0.255] |
1 LED | 2 LED | 3 LED | |
---|---|---|---|
Stride Time L | 0.619 | 0.619 | 0.206 |
Stride Time R | 0.207 | 0.207 | 0.104 |
Stance Time L | 6.724 | 4.196 | 1.661 |
Stance Time R | 6.495 | 4.626 | 1.779 |
Swing Time L | −7.407 | −4.691 | −0.988 |
Swing Time R | −8.095 | −4.405 | −1.429 |
Cadence | −0.194 | −0.297 | −0.173 |
Stride Length L | −0.490 | −0.507 | −0.803 |
Stride Length R | −0.259 | −0.259 | −0.173 |
Step Length L | 0.000 | −0.175 | −0.876 |
Step Length R | −0.428 | −0.514 | −0.514 |
Velocity | −0.420 | −0.084 | −0.042 |
Mean absolute NB | 2.612 | 1.715 | 0.729 |
1 LED | 2 LED | 3 LED | |
---|---|---|---|
Stride Time L | 3.04 | 2.64 | 2.31 |
Stride Time R | 3.64 | 3.20 | 2.62 |
Stance Time L | 7.35 * | 6.90 * | 8.41 * |
Stance Time R | 5.97 * | 5.30 * | 9.80 * |
Swing Time L | 9.43 * | 10.66 ** | 12.62 ** |
Swing Time R | 9.17 * | 7.78 * | 9.40 * |
Cadence | 2.27 | 1.65 | 1.39 |
Stride Length L | 3.40 | 2.63 | 2.66 |
Stride Length R | 1.84 | 2.08 | 2.33 |
Step Length L | 3.59 | 4.97 | 6.21 * |
Step Length R | 6.35 * | 6.19 * | 4.72 |
Velocity | 3.58 | 2.69 | 2.94 |
Mean NLoA | 4.97 | 4.72 | 5.45 * |
1 LED | 2 LED | 3 LED | |||||||
---|---|---|---|---|---|---|---|---|---|
ICC | 95% CI | ICC | 95% CI | ICC | 95% CI | ||||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | Lower Bound | Upper Bound | ||||
Stride Time L | 0.986 | 0.967 | 0.995 | 0.982 | 0.958 | 0.992 | 0.993 | 0.984 | 0.997 |
Stride Time R | 0.987 | 0.971 | 0.994 | 0.990 | 0.979 | 0.995 | 0.991 | 0.980 | 0.996 |
Stance Time L | 0.765 | −0.055 | 0.941 | 0.841 | 0.083 | 0.955 | 0.916 | 0.823 | 0.961 |
Stance Time R | 0.783 | −0.048 | 0.948 | 0.884 | 0.013 | 0.972 | 0.943 | 0.876 | 0.974 |
Swing Time L | 0.648 | −0.075 | 0.898 | 0.772 | 0.016 | 0.930 | 0.850 | 0.701 | 0.929 |
Swing Time R | 0.563 | −0.066 | 0.865 | 0.735 | −0.013 | 0.917 | 0.816 | 0.636 | 0.912 |
Cadence | 0.989 | 0.977 | 0.995 | 0.994 | 0.987 | 0.997 | 0.984 | 0.965 | 0.993 |
Stride Length L | 0.994 | 0.987 | 0.997 | 0.994 | 0.986 | 0.997 | 0.995 | 0.987 | 0.998 |
Stride Length R | 0.994 | 0.988 | 0.997 | 0.998 | 0.995 | 0.999 | 0.997 | 0.994 | 0.999 |
Step Length L | 0.994 | 0.986 | 0.997 | 0.991 | 0.981 | 0.996 | 0.986 | 0.970 | 0.994 |
Step Length R | 0.988 | 0.974 | 0.994 | 0.988 | 0.974 | 0.995 | 0.983 | 0.963 | 0.992 |
Velocity | 0.978 | 0.952 | 0.990 | 0.984 | 0.966 | 0.993 | 0.988 | 0.975 | 0.995 |
Mean ICC | 0.889 | 0.630 | 0.968 | 0.929 | 0.660 | 0.978 | 0.953 | 0.904 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagnini, S.; Pasquini, G.; Schlechtriem, F.; Fransvea, G.; Simoni, L.; Gerli, F.; Magaldi, F.; Cristella, G.; Riener, R.; Carrozza, M.C.; et al. Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis. Sensors 2023, 23, 6059. https://doi.org/10.3390/s23136059
Campagnini S, Pasquini G, Schlechtriem F, Fransvea G, Simoni L, Gerli F, Magaldi F, Cristella G, Riener R, Carrozza MC, et al. Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis. Sensors. 2023; 23(13):6059. https://doi.org/10.3390/s23136059
Chicago/Turabian StyleCampagnini, Silvia, Guido Pasquini, Florian Schlechtriem, Giulia Fransvea, Laura Simoni, Filippo Gerli, Federica Magaldi, Giovanna Cristella, Robert Riener, Maria Chiara Carrozza, and et al. 2023. "Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis" Sensors 23, no. 13: 6059. https://doi.org/10.3390/s23136059
APA StyleCampagnini, S., Pasquini, G., Schlechtriem, F., Fransvea, G., Simoni, L., Gerli, F., Magaldi, F., Cristella, G., Riener, R., Carrozza, M. C., & Mannini, A. (2023). Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis. Sensors, 23(13), 6059. https://doi.org/10.3390/s23136059