State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization
Abstract
:1. Introduction
2. Material and Methods
2.1. BTT Fundamentals
2.2. Algorithm for Transient Arrival Time Simulation
2.3. Arrival Time Array Validation through Deflection Calculation
2.4. Random Noise
2.5. Analyzed Parameters
2.6. Simulation Parameter
3. Results
3.1. Low-Pass Filter
3.2. Zeroing
3.3. Correlation between Parameters
- Color: Blue: NM = 10; Green: NM = 50; Red: NM = 100
- Marker Shape: Circular: CN = Low; Square: CN = Med; Triangular: CN = High
- Marker Filling: Empty: LP; Pattern: LP; Full: LP
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heath, S.; Imregun, M. An improved single-parameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes. Int. J. Mech. Sci. 1996, 38, 1047–1058. [Google Scholar] [CrossRef]
- Kiraly, L.J. Digital System for Dynamic Turbine Engine Blade Displacement Measurements; No. E-288; NASA: Washington, DC, USA, 1979.
- McCarty, P.E.; Thompson, J.W., Jr.; Ballard, R.S. Noninterference technique for measurement of turbine engine compressor blade stress. J. Aircr. 1982, 19, 65–70. [Google Scholar] [CrossRef]
- Knappett, D.; Garcia, J. Blade tip-timing and strain gauge correlation on compressor blades. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2008, 222, 497–506. [Google Scholar] [CrossRef]
- Janicki, G.; Pezouvanis, A.; Mason, B.; Ebrahimi, M.K. Turbine blade vibration measurement methods for turbocharges. Am. J. Sens. Technol. 2014, 2, 13–19. [Google Scholar] [CrossRef]
- Robinson, W.W.; Washburn, R.S. A real time non-interference stress measurement system (NSMS) for determining aero engine blade stresses. Instruments Soc. Am. 1991, 37, 91–103. [Google Scholar]
- Simmons, H.R.; Michalsky, D.L.; Brewer, K.E.; Smalley, A.J. Measuring Rotor and Blade Dynamics Using an Optical Blade Tip Sensor; American Society of Mechanical Engineers: New York, NY, USA, 1990; Volume 79085, p. V005T14A003. [Google Scholar] [CrossRef] [Green Version]
- Carrington, I.B.; Wright, J.R.; Cooper, J.E.; Dimitriadis, G. A comparison of blade tip-timing data analysis methods. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2001, 215, 301–312. [Google Scholar] [CrossRef]
- Rossi, G.; Brouckaert, J.F. Design of blade tip-timing measurements systems based on uncertainty analysis. In Proceedings of the International Instrumentation Symposium, San Diego, CA, USA, 4 June 2012; pp. 4–8. [Google Scholar]
- Pan, M.; Yang, Y.; Guan, F.; Hu, H.; Xu, H. Sparse representation based frequency detection and uncertainty reduction in blade tip-timing measurement for multi-mode blade vibration monitoring. Sensors 2017, 17, 1745. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, J.F. Tip Timing and Tip Clearance Problem in Turbomachines; VKI Lecture Series; Von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 2007; Volume 3. [Google Scholar]
- Gil-García, J.M.; Solís, A.; Aranguren, G.; Zubia, J. An architecture for on-line measurement of the tip clearance and time of arrival of a bladed disk of an aircraft engine. Sensors 2017, 17, 2162. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Bonello, P.; Russhard, P.; Procházka, P.; Mekhalfia, M.L.; Tchuisseu, E.B.T. Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated uncertainties. Mech. Syst. Signal Process. 2022, 178, 109257. [Google Scholar] [CrossRef]
- Przysowa, R.; Russhard, P. Non-contact measurement of blade vibration in an axial compressor. Sensors 2019, 20, 68. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Li, H.; Chen, Y.; Cao, H.; Fan, Z.; Li, Y. Development of blade tip-timing signal simulator based on a novel model reduction method of bladed disks. J. Sound Vib. 2022, 534, 117053. [Google Scholar] [CrossRef]
- Bornassi, S.; Battiato, G.; Firrone, C.; Berruti, T. Tip-timing measurements of transient vibrations in mistuned bladed disks. Int. J. Mech. Sci. 2022, 226, 107393. [Google Scholar] [CrossRef]
- Tchuisseu, E.B.T.; Procházka, P.; Maturkanič, D.; Russhard, P.; Brabec, M. Optimizing probes positioning in Blade Tip Timing systems. Mech. Syst. Signal Process. 2022, 166, 108441. [Google Scholar] [CrossRef]
- Heath, S.; Slater, T.; Mansfield, L.; Loftus, P. Turbomachinery blade tip measurement techniques. In Proceedings of the Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997; pp. 31–32. [Google Scholar]
- Andrenelli, L.; Paone, N.; Rossi, G. Large-bandwidth reflection fiber-optic sensors for turbomachinery rotor blade diagnostics. Sens. Actuators A Phys. 1992, 32, 539–542. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, F.; Niu, G.; Jiang, J.; Li, J. A Blade Tip Timing Method Based on a Microwave Sensor. Sensors 2017, 17, 1097. [Google Scholar] [CrossRef] [Green Version]
- Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R. Magnetic nondestructive testing of rotor blade tips. J. Appl. Phys. 2015, 117, 17A705. [Google Scholar] [CrossRef]
- Tomassini, R.; Rossi, G.; Brouckaert, J.F. On the development of a magnetoresistive sensor for blade tip-timing and blade tip clearance measurement systems. Rev. Sci. Instrum. 2016, 87, 102505. [Google Scholar] [CrossRef]
- Huang, C.F.; Hou, M.J. Technology for measurement of blade tip clearance in an aeroengine. Meas. Control. Technol. 2011, 27, 27–32. [Google Scholar]
- Mevissen, F.; Meo, M. A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors 2019, 19, 711. [Google Scholar] [CrossRef] [Green Version]
- Gil-García, J.M.; García, I.; Zubia, J.; Aranguren, G. Measurement of blade tip clearance and time of arrival in turbines using an optic sensor. In Proceedings of the 2015 International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 8–9 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 45–48. [Google Scholar]
- Reinhardt, R.; Lancelle, D.; Hagendorf, O.; Schultalbers, M.; Magnor, O.; Duenow, P. Improved reference system for high precision blade tip-timing on axial compressors. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- García, I.; Beloki, J.; Zubia, J.; Aldabaldetreku, G.; Illarramendi, M.A.; Jiménez, F. An optical fiber bundle sensor for tip clearance and tip-timing measurements in a turbine rig. Sensors 2013, 13, 7385–7398. [Google Scholar] [CrossRef]
- Ye, D.; Duan, F.; Jiang, J.; Niu, G.; Liu, Z.; Li, F. Identification of vibration events in rotating blades using a fiber optical tip-timing sensor. Sensors 2019, 19, 1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capponi, L.; Tocci, T.; Marrazzo, M.; Marsili, R.; Rossi, G. Experimental Investigation on Hardware and Triggering Effect in Tip-Timing Measurement Uncertainty. Sensors 2023, 23, 1129. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Bonello, P.; Russhard, P. An experimentally validated modal model simulator for the assessment of different Blade Tip Timing algorithms. Mech. Syst. Signal Process. 2020, 136, 106484. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Jiang, X.; Gao, S. Blade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method. J. Eng. Gas Turbines Power 2020, 142, 31001. [Google Scholar] [CrossRef]
- Andrenelli, L.; Paone, N.; Rossi, G.; Tomasini, E.P. Non-intrusive measurement of blade tip vibration in turbomachines. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 1991; Volume 79023, p. V005T15A012. [Google Scholar]
- Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods; OUP: Oxford, UK, 2012; Volume 38. [Google Scholar]
- Rao, S.S. Vibration of Continuous Systems; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Bretscher, O. Linear Algebra with Applications, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2005. [Google Scholar]
[Hz] Imposed | [mm] Imposed | [Hz] Measured | [%] Measured | [mm] Measured | [%] Measured |
---|---|---|---|---|---|
1500 | 0.05 | 1500.3 | 0.02 | 0.05 | 0 |
7500 | 0.05 | 7501.5 | 0.02 | 0.05 | 0 |
15,000 | 0.05 | 14,998.4 | 0.010667 | 0.05 | 0 |
22,500 | 0.05 | 22,501.8 | 0.008 | 0.051 | 2 |
30,000 | 0.05 | 29,992 | 0.026667 | 0.052 | 4 |
[Hz] Imposed | [mm] Imposed | [Hz] Measured | [%] Measured | [mm] Measured | [%] Measured |
---|---|---|---|---|---|
10,000 | 0.001 | 10,025.4 | 0.254 | 0.001 | 0 |
10,000 | 0.005 | 9999.3 | 0.007 | 0.005 | 0 |
10,000 | 0.01 | 9994.6 | 0.054 | 0.01 | 0 |
10,000 | 0.05 | 9994.6 | 0.054 | 0.05 | 0 |
10,000 | 0.1 | 9994.6 | 0.054 | 0.1 | 0 |
10,000 | 0.5 | 9994.6 | 0.054 | 0.501 | 0.6 |
CN | Probes Location [°] | |||||||
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | |
1 | 256.19 | 228.68 | 227.45 | 182.09 | 176.77 | 138.30 | 136.89 | 125.29 |
1.169 | 197.97 | 99.92 | 91.73 | 329.36 | 305.97 | 286.58 | 282.24 | 238.7 |
1.313 | 358.77 | 288.82 | 286.34 | 212.70 | 201.43 | 86.68 | 25.49 | 20.18 |
1.711 | 138.19 | 95.05 | 86.92 | 35.92 | 21.37 | 14.83 | 353.41 | 272.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocci, T.; Capponi, L.; Rossi, G.; Marsili, R.; Marrazzo, M. State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization. Sensors 2023, 23, 2600. https://doi.org/10.3390/s23052600
Tocci T, Capponi L, Rossi G, Marsili R, Marrazzo M. State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization. Sensors. 2023; 23(5):2600. https://doi.org/10.3390/s23052600
Chicago/Turabian StyleTocci, Tommaso, Lorenzo Capponi, Gianluca Rossi, Roberto Marsili, and Marco Marrazzo. 2023. "State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization" Sensors 23, no. 5: 2600. https://doi.org/10.3390/s23052600
APA StyleTocci, T., Capponi, L., Rossi, G., Marsili, R., & Marrazzo, M. (2023). State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization. Sensors, 23(5), 2600. https://doi.org/10.3390/s23052600