Reliability Improvement of Magnetic Corrosion Monitor for Long-Term Applications
Abstract
:1. Introduction
- Design of a novel smart corrosion monitor based on a dissimilar active redundancy approach to monitor wall loss due to internal and buried corrosion at critical locations;
- Development of methodology based on Pearson’s correlation coefficient for diagnosis of faulty sensors from time series data;
- Evaluation of stability and performance of the novel magnetic monitor for an extended time period through real life aging tests conducted for seven months.
2. Methodology and Design
2.1. Design and Development
2.1.1. Working Principle
2.1.2. Corrosion Monitor Development
3. Sensor Fault Diagnosis
4. Experimentation
Identification of Faulty Sensors
5. Discussion
6. Conclusions and Future Work
- The signals from the real life aging tests reveal that corrosion monitor based on MFL and MEC sensors have the capability to track wall thickness loss due to internal and/or buried corrosion in an ambient environment. The corrosion monitor was found to not be affected by the variation in temperature and humidity;
- Pearson’s correlation analysis conducted on the time series data received from the two corrosion monitors was used for identification and isolation of the faulty sensor. This is significant especially for long-term applications with limited access;
- At the end of the experiments, the critical component of the corrosion monitor is found to be the impedance evaluation PModia board;
- The study revealed that, compared to the electromagnetic sensors discussed in the literature, the corrosion monitor developed in this study is capable of monitoring wall loss due to internal and buried corrosion remotely. The approach for identification of faulty sensors in the corrosion monitoring device can contribute to a reliable long-term corrosion monitoring in the industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFL | Magnetic Flux Leakage |
MEC | Magnetic Eddy Current |
DC | Direct Current |
EMAT | Electromagnetic Acoustic Transducer |
References
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. Npj Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Koch, G. Cost of corrosion. Trends Oil Gas Corros. Res. Technol. 2017, 3–30. [Google Scholar] [CrossRef]
- Schmitt, G.; Schütze, M.; Hays, G.F. Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. World Corros. Organ. 2009, 38, 14. [Google Scholar]
- Fayomi, O.; Akande, I.; Odigie, S. Economic impact of corrosion in oil sectors and prevention: An overview. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1378, p. 022037. [Google Scholar]
- Presse, A.F. Sinopec Pipeline Blast. Available online: https://www.businessinsider.com/chinese-oil-giant-sinopec-to-pay-big-over-pipeline-blast-that-killed-more-than-60-people-2014-1?r=US;IR=T (accessed on 10 October 2022).
- PHSMA. Pipeline Incident 20 Year Trends. Available online: https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends (accessed on 15 October 2022).
- Public Report of The Fire and Explosion at the ConocoPhillips Humber Refinery. Available online: https://documents.pub/document/public-report-of-the-fire-and-explosion-at-the-conocophillips-humber-.html?page=1 (accessed on 5 October 2022).
- Papavinasam, S.; Revie, R.W.; Attard, M.; Demoz, A.; Michaelian, K. Comparison of techniques for monitoring corrosion inhibitors in oil and gas pipelines. Corrosion 2003, 59, 1096–1111. [Google Scholar] [CrossRef]
- Wright, R.F.; Lu, P.; Devkota, J.; Lu, F.; Ziomek-Moroz, M.; Ohodnicki, P.R., Jr. Review on corrosion sensors for structural health monitoring of oil and natural gas infrastructure. In Proceedings of the Smart Structures and NDE for Energy Systems and Industry 4.0. SPIE, Denver, CO, USA, 4–5 March 2019; Volume 10973, pp. 128–142. [Google Scholar]
- Powell, D.E. Internal Corrosion Monitoring Using Coupons and Er Probes A Practical Focus on the Most Commonly Used, Cost-Effective Monitoring Techniques. Oil Gas Pipelines 2015, 495–514. [Google Scholar] [CrossRef]
- Pickthall, T.; Rivera, M.; McConnell, M.; Vezis, R. Corrosion Monitoring Equipment, A Review of Application and Techniques. In Proceedings of the CORROSION 2011, Houston, TX, USA, 13–17 March 2011. [Google Scholar]
- Carullo, A.; Ferraris, F.; Parvis, M.; Vallan, A.; Angelini, E.; Spinelli, P. Low-cost electrochemical impedance spectroscopy system for corrosion monitoring of metallic antiquities and works of art. IEEE Trans. Instrum. Meas. 2000, 49, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Varela, F.; Yongjun Tan, M.; Forsyth, M. An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines. Corros. Eng. Sci. Technol. 2015, 50, 226–235. [Google Scholar] [CrossRef]
- Ameh, E.; Ikpeseni, S.; Lawal, L. A review of field corrosion control and monitoring techniques of the upstream oil and gas pipelines. Niger. J. Technol. Dev. 2017, 14, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Cegla, F. Ultrasonic monitoring of corrosion with permanently installed sensors (PIMS). In Sensors, Algorithms and Applications for Structural Health Monitoring; Springer: Berlin/Heidelberg, Germany, 2018; pp. 13–20. [Google Scholar]
- Barshinger, J.; Pellegrino, B.; Nugent, M. Permanently installed monitoring system for accurate wall thickness and corrosion rate measurement. In Proceedings of the CORROSION 2016, Vancouver, BC, Canada, 6–10 March 2016. [Google Scholar]
- Leung, M.S.H.; Corcoran, J. Evaluating the probability of detection capability of permanently installed sensors using a structural integrity informed approach. J. Nondestruct. Eval. 2021, 40, 82. [Google Scholar] [CrossRef]
- Cawley, P.; Cegla, F.; Galvagni, A. Guided waves for NDT and permanently-installed monitoring. Insight-Non Test. Cond. Monit. 2012, 54, 594–601. [Google Scholar] [CrossRef]
- Malik, A.F.; Burhanudin, Z.A.; Jeoti, V. A flexible polyimide based SAW delay line for corrosion detection. In Proceedings of the 2011 National Postgraduate Conference, Perak, Malaysia, 19–20 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Corrosionradar Monitoring System. Available online: https://www.corrosionradar.com/products (accessed on 17 December 2022).
- Twigg, H.K.; Molinari, M. Test results for a capacitance-based corrosion sensor. In Proceedings of the Thirteenth International Conference on Condition Monitoring and Machine Failure Prevention Technologies, Paris, France, 10–12 October 2016. [Google Scholar]
- Cawley, P.; Lowe, M.; Alleyne, D.; Pavlakovic, B.; Wilcox, P. Practical long range guided wave inspection-applications to pipes and rail. Mater. Eval. 2003, 61, 66–74. [Google Scholar]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.M.; Ahmad, Z.B. Simulation methods for guided wave-based structural health monitoring: A review. Appl. Mech. Rev. 2015, 67, 010803. [Google Scholar] [CrossRef] [Green Version]
- Lozev, M.; Smith, R.; Grimmett, B. Evaluation of methods for detecting and monitoring of corrosion damage in risers. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 8–13June 2003; Volume 36827, pp. 363–374. [Google Scholar]
- EMERSON. Rosemount Wireless Corrosion Erosion Monitoring. Available online: https://www.emerson.com/en-us/automation/measurement-instrumentation/corrosion-erosion-monitoring/about-rosemount-wireless-corrosion-erosion-monitoring (accessed on 14 December 2022).
- Inductosense. The Wand System. Available online: https://www.inductosense.com/our-solution/ (accessed on 17 December 2022).
- SMS. Real-Time UT Wall Thickness Monitoring. Available online: https://www.smsintegrity.com/services/corrosion-monitoring/real-time-ut-wall-thickness-monitoring (accessed on 16 December 2022).
- Goedecke, H. Ultrasonic or MFL inspection: Which technology is better for you. Pipeline Gas J. 2003, 230, 34–41. [Google Scholar]
- Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. Theory and application of magnetic flux leakage pipeline detection. Sensors 2015, 15, 31036–31055. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Huang, S.; Zheng, Y.; Wang, S.; Zhao, W. A method using magnetic eddy current testing for distinguishing ID and OD defects of pipelines under saturation magnetization. Appl. Comput. Electromagn. Soc. J. (Aces) 2020, 35, 1089–1098. [Google Scholar] [CrossRef]
- Ha, N.; Lee, H.S.; Lee, S. Development of a Wireless Corrosion Detection System for Steel-Framed Structures Using Pulsed Eddy Currents. Sensors 2021, 21, 8199. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Sun, M.; Li, Z. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr. Build. Mater. 2017, 135, 68–75. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, L.; Zhao, R.; Zhou, J.; Yang, M.; Xia, R. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor. Sensors 2016, 16, 1439. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jin, Z.; Zhao, T.; Wang, P.; Li, Z.; Xiong, C.; Zhang, K. Use of a novel electro-magnetic apparatus to monitor corrosion of reinforced bar in concrete. Sensors Actuators A Phys. 2019, 286, 14–27. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Wang, P.; Zhao, T. Corrosion mechanism of reinforced bars inside concrete and relevant monitoring or detection apparatus: A review. Constr. Build. Mater. 2021, 279, 122432. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Gao, Y.; Zhao, T.; Wang, P.; Li, Z. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete. Cem. Concr. Compos. 2020, 113, 103730. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Xu, X.; Zhao, T.; Wang, P.; Li, Z. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete. Constr. Build. Mater. 2020, 245, 118472. [Google Scholar] [CrossRef]
- Tsukada, K.; Yoshioka, M.; Kiwa, T.; Hirano, Y. A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds. Ndt E Int. 2011, 44, 101–105. [Google Scholar] [CrossRef]
- Tsukada, K.; Haga, Y.; Morita, K.; Song, N.; Sakai, K.; Kiwa, T.; Cheng, W. Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Li, E.; Wu, J.; Zhu, J.; Kang, Y. Quantitative Evaluation of Buried Defects in Ferromagnetic Steels Using DC Magnetization-Based Eddy Current Array Testing. IEEE Trans. Magn. 2020, 56, 1–11. [Google Scholar] [CrossRef]
- Guan, S.; Taylor, C.; Sridhar, N. Prediction of Sensor System Reliability. Int. J. COMADEM 2017, 20, 41–45. [Google Scholar]
- Kajmakovic, A.; Diwold, K.; Römer, K.; Pestana, J.; Kajtazovic, N. Degradation Detection in a Redundant Sensor Architecture. Sensors 2022, 22, 4649. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wu, X.H.; Zhou, Z.L.; Li, Y.F. The reliability and lifetime distribution of SnO2-and CdSnO3-gas sensors for butane. Sensors Actuators B Chem. 2003, 92, 186–190. [Google Scholar] [CrossRef]
- Petrovic, S.; Ramirez, A.; Maudie, T.; Stanerson, D.; Wertz, J.; Bitko, G.; Matkin, J.; Monk, D.J. Reliability test methods for media-compatible pressure sensors. IEEE Trans. Ind. Electron. 1998, 45, 877–885. [Google Scholar] [CrossRef]
- Shea, H.R. Reliability of MEMS for space applications. In Proceedings of the Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, San Jose, CA, USA, 25–26 January 2006; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6111, p. 61110A. [Google Scholar]
- Jeong, J.S.; Lee, W.k.; Lee, C.k.; Choi, J. Lifetime and failure analysis of perovskite-based ceramic NTC thermistors by thermal cycling and abrasion combined stress. Microelectron. Reliab. 2017, 76, 112–116. [Google Scholar] [CrossRef]
- Mobley, R.K. An Introduction to Predictive Maintenance; Elsevier: New York, NY, USA, 2002. [Google Scholar]
- Kajmakovic, A.; Zupanc, R.; Mayer, S.; Kajtazovic, N.; Hoeffernig, M.; Vogl, H. Predictive fail-safe improving the safety of industrial environments through model-based analytics on hidden data sources. In Proceedings of the 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES), Graz, Austria, 6–8 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Shin, D.; Park, K.m.; Park, M. Development of fail-safe algorithm for exteroceptive sensors of autonomous vehicles. Electronics 2020, 9, 1774. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Wang, J.; Wang, C.; Duan, Y. Recent advances in sensor fault diagnosis: A review. Sensors Actuators A Phys. 2020, 309, 111990. [Google Scholar] [CrossRef]
- Das, A.; Maiti, J.; Banerjee, R. Process monitoring and fault detection strategies: A review. Int. J. Qual. Reliab. Manag. 2012, 29, 720–752. [Google Scholar] [CrossRef]
- Kajmakovic, A.; Diwold, K.; Kajtazovic, N.; Zupanc, R. Challenges in Mitigating Errors in 1oo2D Safety Architecture with COTS Micro-controllers. Int. J. Adv. Syst. Meas. 2020, 13, 250–263. [Google Scholar]
- Jiang, L.; Djurdjanovic, D.; Ni, J.; Lee, J. Sensor degradation detection in linear systems. In Engineering Asset Management; Springer: London, UK, 2006; pp. 1252–1260. [Google Scholar]
- Ma, D.; Fang, H.; Wang, N.; Zheng, H.; Dong, J.; Hu, H. Automatic defogging, deblurring, and real-time segmentation system for sewer pipeline defects. Autom. Constr. 2022, 144, 104595. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Yang, Z.; Ali, S.; Tong, N.; Baseer, S. Correlation-Based Anomaly Detection Method for Multi-sensor System. Comput. Intell. Neurosci. 2022, 2022, 4756480. [Google Scholar] [CrossRef]
- Jiang, F.; Zhu, Z.; Li, W.; Ren, Y.; Zhou, G.; Chang, Y. A fusion feature extraction method using EEMD and correlation coefficient analysis for bearing fault diagnosis. Appl. Sci. 2018, 8, 1621. [Google Scholar] [CrossRef] [Green Version]
- Wasif, R.; Tokhi, M.O.; Shirkoohi, G.; Marks, R.; Rudlin, J. Development of Permanently Installed Magnetic Eddy Current Sensor for Corrosion Monitoring of Ferromagnetic Pipelines. Appl. Sci. 2022, 12, 1037. [Google Scholar] [CrossRef]
- Ijaz, S.; Yan, L.; Hamayun, M.T.; Shi, C. Active fault tolerant control scheme for aircraft with dissimilar redundant actuation system subject to hydraulic failure. J. Frankl. Inst. 2019, 356, 1302–1332. [Google Scholar] [CrossRef]
- Fitzpatrick, R. Maxwells Equations and the Principles of Electromagnetism; Laxmi Publications, Ltd.: New Delhi, India, 2010. [Google Scholar]
- Wasif, R.; Tokhi, M.O.; Rudlin, J.; Marks, R.; Shirkoohi, G.; Zhao, Z.; Duan, F. Particle swarm optimization of excitation system design of magnetic eddy current sensor. In Proceedings of the 2022 Prognostics and Health Management Conference (PHM-2022 London), London, UK, 27–29 May 2022; pp. 182–187. [Google Scholar] [CrossRef]
- Mahmood, S.; Alani, S.; Hasan, F.; Mustafa, M. Esp 8266 node mcu based weather monitoring system. In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 28–30 June 2020. [Google Scholar]
- Vanaja, K.J.; Suresh, A.; Srilatha, S.; Kumar, K.V.; Bharath, M. IOT based agriculture system using node MCU. Int. Res. J. Eng. Technol. 2018, 5, 3025–3028. [Google Scholar]
- Tawie, R.; Da’ud, E. Low-cost impedance approach using AD5933 for sensing and monitoring applications. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 429, p. 012104. [Google Scholar]
- Huang, H.B.; Yi, T.H.; Li, H.N. Bayesian combination of weighted principal-component analysis for diagnosing sensor faults in structural monitoring systems. J. Eng. Mech. 2017, 143, 04017088. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, F. A sensor fault diagnosis method based on KPCA and contribution graph. Vibroengineering Procedia 2020, 33, 6–10. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N. Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks. Smart Struct. Syst. 2016, 17, 1031–1053. [Google Scholar] [CrossRef]
- Hong, S.; Zheng, F.; Shi, G.; Li, J.; Luo, X.; Xing, F.; Tang, L.; Dong, B. Determination of impressed current efficiency during accelerated corrosion of reinforcement. Cem. Concr. Compos. 2020, 108, 103536. [Google Scholar] [CrossRef]
- Nossoni, G.; Harichandran, R. Current efficiency in accelerated corrosion testing of concrete. Corrosion 2012, 68, 801–809. [Google Scholar] [CrossRef]
- Kuze, N.; Shibasaki, I. MBE research and production of Hall sensors. III-Vs Rev. 1997, 10, 28–32. [Google Scholar] [CrossRef] [Green Version]
Dataset No. | Pearson’s Coefficient |
---|---|
1 | −0.90 |
2 | −0.92 |
3 | −0.93 |
4 | −0.95 |
5 | −0.89 |
Month | Corrosion Monitor 1 | Corrosion Monitor 2 |
---|---|---|
April 2022 | −0.95 | −0.87 |
May 2022 | −0.87 | −0.91 |
June 2022 | −0.94 | −0.92 |
July 2022 | −0.94 | −1 |
August 2022 | −0.90 | InF * |
September 2022 | −0.85 | InF * |
October 2022 | −0.68 | InF * |
Corrosion Monitor 1 | Corrosion Monitor 2 | |||||
---|---|---|---|---|---|---|
Distance between the magnets (mm) | 5 | 10 | 15 | 5 | 10 | 15 |
5 | 3.4 | 3.2 | 3.4 | 2.5 | 5.6 | 5.6 |
10 | 4.5 | 4.5 | 4.6 | 5.5 | 4.3 | 5.6 |
15 | 3.5 | 4.8 | 5.4 | 4 | 4 | 4.9 |
20 | 5.6 | 5.6 | 4.6 | 5.7 | 3.4 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasif, R.; Tokhi, M.O.; Rudlin, J.; Shirkoohi, G.; Duan, F. Reliability Improvement of Magnetic Corrosion Monitor for Long-Term Applications. Sensors 2023, 23, 2212. https://doi.org/10.3390/s23042212
Wasif R, Tokhi MO, Rudlin J, Shirkoohi G, Duan F. Reliability Improvement of Magnetic Corrosion Monitor for Long-Term Applications. Sensors. 2023; 23(4):2212. https://doi.org/10.3390/s23042212
Chicago/Turabian StyleWasif, Rukhshinda, Mohammad Osman Tokhi, John Rudlin, Gholamhossein Shirkoohi, and Fang Duan. 2023. "Reliability Improvement of Magnetic Corrosion Monitor for Long-Term Applications" Sensors 23, no. 4: 2212. https://doi.org/10.3390/s23042212
APA StyleWasif, R., Tokhi, M. O., Rudlin, J., Shirkoohi, G., & Duan, F. (2023). Reliability Improvement of Magnetic Corrosion Monitor for Long-Term Applications. Sensors, 23(4), 2212. https://doi.org/10.3390/s23042212