Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of EEG Feature Map Based on AEP
2.1.1. EEG Feature Selection
2.1.2. EEG Feature Map
2.2. FPN-LSTM Feature Extraction Network
3. Experiments and Results
3.1. EEG Feature Map Analysis
3.2. EEG Channel Analysis
3.3. Analysis of FPN-LSTM Emotion Recognition Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Fu, B.X.; Li, F.; Shi, G.M.; Zheng, W.M. A novel transferability attention neural network model for EEG emotion recognition. Neurocomputing 2021, 447, 92–101. [Google Scholar] [CrossRef]
- Wanrou, H.; Gan, H.; Li, L.L.; Zhang, Z.G.; Liang, Z. Video-triggered EEG-emotion public databases and current methods: A survey. Brain Sci. Adv. 2020, 6, 255–287. [Google Scholar]
- Li, Y.; Wang, L.; Zheng, W.M.; Zong, Y.; Qi, L.; Cui, Z.; Zhang, T.; Song, T.F. A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 354–367. [Google Scholar] [CrossRef]
- Li, G.; Ouyang, D.; Yuan, Y.; Li, W.; Guo, Z.; Qu, X.; Green, P. An EEG Data Processing Approach for Emotion Recognition. IEEE. Sens. J. 2022, 22, 10751–10763. [Google Scholar] [CrossRef]
- Aslan, M. CNN based efficient approach for emotion recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7335–7346. [Google Scholar] [CrossRef]
- Huang, E.; Zheng, X.; Fang, Y.; Zhang, Z. Classification of Motor Imagery EEG Based on Time-Domain and Frequency-Domain Dual-Stream Convolutional Neural Network. IRBM 2022, 43, 107–113. [Google Scholar] [CrossRef]
- Li, C.; Wang, B.; Zhang, S.; Liu, S.; Song, R.; Cheng, J.; Chen, X. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism. Comput. Biol. Med. 2022, 143, 105303. [Google Scholar] [CrossRef]
- Li, C.; Hou, Y.M.; Song, R.C.; Cheng, J.; Liu, Y.; Chen, X. Multi-channel EEG-based emotion recognition in the presence of noisy labels. Sci. China Inform. Sci. 2022, 65, 64–79. [Google Scholar] [CrossRef]
- Liu, S.Q.; Wang, X.; Zhao, L.; Zhao, J.; Xin, Q.; Wang, S.H. Subject-independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 1710–1721. [Google Scholar] [CrossRef]
- Jiang, H.P.; Wang, Z.Q.; Jiao, R.; Jiang, S. Picture-Induced EEG Signal Classification Based on CVC Emotion Recognition System. Comput. Mater. Contin. 2020, 65, 1453–1465. [Google Scholar] [CrossRef]
- Zhang, S.; Guan, C.T. Emotion Recognition with Refined Labels for Deep Learning. EMBC 2020, 2020, 108–111. [Google Scholar]
- Song, T.F.; Zheng, W.M.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Trans. Affect. Comput. 2020, 11, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Chakravarthi, B.; Ng, S.C.; Ezilarasan, M.R.; Leung, M.F. EEG-based emotion recognition using hybrid CNN and LSTM classification. Front. Comput. Neurosci. 2022, 16, 1019776. [Google Scholar] [CrossRef]
- Tawhid, M.N.A.; Siuly, S.; Wang, H. Diagnosis of autism spectrum disorder from EEG using a time-frequency spectrogram i mage-based approach. Electron. Lett. 2020, 56, 1372–1375. [Google Scholar] [CrossRef]
- Ozdemir, M.A.; Degirmenci, M.; Izci, E.; Akan, A. EEG-based emotion recognition with deep convolutional neural networks. Biomed. Tech. 2020, 66, 43–57. [Google Scholar] [CrossRef]
- Bird, J.J.; Faria, D.R.; Manso, L.J.; Ayrosa, P.P.; Ekart, A. A study on CNN image classification of EEG signals represented in 2D and 3D. J. Neural. Eng. 2021, 18, 2605–2623. [Google Scholar] [CrossRef]
- Li, X.; Song, D.; Zhang, P.; Hou, Y.; Hu, B. Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring. Int. J. Data Min. Bioinform. 2017, 18, 1–27. [Google Scholar] [CrossRef]
- Shriram, R.; Sundhararajan, M.; Daimiwal, N. EEG Based Cognitive Workload Assessment for Maximum Efficiency. IOSR-JECE 2013, 7, 34–38. [Google Scholar]
- Dura, A.; Wosiak, A. EEG channel selection strategy for deep learning in emotion recognition. Procedia Comput. Sci. 2021, 192, 2789–2796. [Google Scholar] [CrossRef]
- Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. Emotion recognition based on EEG using LSTM recurrent neural network. Int. J. Adv. Comput. 2017, 8, 355–358. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Shin, S.B.; Kim, S.D. Electroencephalography Based Fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) Model for Emotion Recognition System. Sensors 2018, 18, 1383. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE+LSTM: A New framework for emotion recognition from multi-channel EEG. Front. Neurorobot. 2019, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.M.; Alçin, Ö.F.; Abdalla, K.H.; Şengür, A. Two-stepped majority voting for efficient EEG-based emotion classification. Brain Inform. 2020, 7, 7–12. [Google Scholar] [CrossRef]
- Rajpoot, A.S.; Panicker, M.R. Subject independent emotion recognition using EEG signals employing attention driven neural networks. Biomed. Signal Process. Control 2022, 75, 103547. [Google Scholar]
Rhythm | Frequency (Hz) | Representative Characteristics | |
---|---|---|---|
0~4 | It is commonly seen in the EEG of infants with brain hypoplasia, and in the deep sleep of adults with some brain diseases. | ||
5~8 | It is often found in the state of exhaustion and deep thinking. | ||
Slow | 9~10 | Before going to sleep, consciousness gradually moves towards a fuzzy brain state. | |
Medium | 10~11 | Relaxed and focused. The body is in a comfortable state, and the mind is particularly active and can always inspire. | |
Fast | 12~13 | In a state of high concentration and alertness. | |
Slow | 14~16 | In a state of concentration and ease. | |
Medium | 16.5~20 | In the state of receiving various external information and thinking. | |
Fast | 20.5~30 | In a state of agitation or excitement. | |
≥31 | In a state of happiness, stress relief, or thought. |
Layer (Type) | Kernel Size | Number of Convolutional Kernels | Number of Parameters |
---|---|---|---|
Conv1 | 5 × 5 | 8 | 896 |
Conv2 | 5 × 5 | 16 | 18,496 |
Conv3 | 3 × 3 | 32 | 73,856 |
Pool | 5 × 5 | 128 | 0 |
LSTM1 | - | 128 | 68,096 |
LSTM2 | - | 128 | 131,584 |
Desne1 | - | 100 | 1,683,850 |
Dense2 | - | 2 | 202 |
Data Type | Data Size | Data Form |
---|---|---|
data | 40 × 40 × 8064 | video/trial × channel × data |
labels | 40 × 4 | video/trial × label |
Classification | Feature Type | ||
---|---|---|---|
Average Power/% | Standard Deviation Power/% | Variance Power/% | |
Valence | 89.98 | 82.56 | 71.36 |
Arousal | 90.23 | 83.79 | 72.34 |
Weight Proportion (w, 1 − w) | Accuracy | |
---|---|---|
Valence/% | Arousal/% | |
No weight set | 85.64 | 86.31 |
(0.95, 0.05) | 82.55 | 83.67 |
(0.90, 0.10) | 84.25 | 85.42 |
(0.85, 0.15) | 87.74 | 88.75 |
(0.80, 0.20) | 90.05 | 90.84 |
(0.75, 0.25) | 89.18 | 89.82 |
(0.70, 0.30) | 87.12 | 87.65 |
(0.65, 0.35) | 86.18 | 86.56 |
(0.60, 0.40) | 85.87 | 86.01 |
(0.55, 0.45) | 84.99 | 84.78 |
(0.50, 0.50) | 82.35 | 81.65 |
Study | Method | Classification | Test Accuracy (%) |
---|---|---|---|
Reference [20] (2017) | LSTM 1D EEG | Arousal | 85.65 |
Valence | 85.45 | ||
Reference [21] (2018) | CNN 1D EEG + GSR | Arousal | 76.56 |
Valence | 80.46 | ||
Reference [22] (2019) | LSTM − RNN 1D EEG | Arousal | 74.38 |
Valence | 81.10 | ||
Reference [23] (2020) | KNN 1D EEG | Arousal | 85.00 |
Valence | 86.30 | ||
Reference [15] (2020) | CNN − LSTM 2D EFM | Arousal | 86.13 |
Valence | 90.62 | ||
Reference [24] (2022) | LSTM CNN 1D EEG | Arousal | 69.50 |
Valence | 65.90 | ||
Proposed method | FPN − LSTM 2D EFM | Arousal | 90.84 |
Valence | 90.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Du, J.; Zhao, R.; Xu, K.; Zhang, L.; She, Y. Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition. Sensors 2023, 23, 1622. https://doi.org/10.3390/s23031622
Zhang X, Li Y, Du J, Zhao R, Xu K, Zhang L, She Y. Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition. Sensors. 2023; 23(3):1622. https://doi.org/10.3390/s23031622
Chicago/Turabian StyleZhang, Xiaodan, Yige Li, Jinxiang Du, Rui Zhao, Kemeng Xu, Lu Zhang, and Yichong She. 2023. "Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition" Sensors 23, no. 3: 1622. https://doi.org/10.3390/s23031622
APA StyleZhang, X., Li, Y., Du, J., Zhao, R., Xu, K., Zhang, L., & She, Y. (2023). Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition. Sensors, 23(3), 1622. https://doi.org/10.3390/s23031622