Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices
Abstract
:1. Introduction
2. Methods
2.1. System Architecture
2.2. Circuit Implementation
2.2.1. Pulse-Frequency Modulation Circuit
2.2.2. 4-Bit Counter and Serializer Circuit
2.2.3. Current Driver Circuit
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, C.; Triolo, R.; Elias, A.; Kilgore, K.; DiMarco, A.F.; Bogie, K.; Vette, A.H.; Audu, M.L.; Kobetic, R.; Chang, S.R.; et al. Functional Electrical Stimulation and Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2014, 25, 631–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamian, B.A.; Siegel, N.; Nourie, B.; Serruya, M.D.; Heary, R.F.; Harrop, J.S.; Vaccaro, A.R. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J. Orthop. Traumatol. 2022, 23, 1–17. [Google Scholar] [CrossRef]
- Luo, S.; Xu, H.; Zuo, Y.; Liu, X.; All, A.H. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. NeuroMolecular Med. 2020, 22, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Weiland, J.D.; Walston, S.T.; Humayun, M.S. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu. Rev. Vis. Sci. 2016, 2, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Lu, Y.; Qin, S.; Wu, T.; Qin, B. Electrical stimulation scheme optimization for retinal prosthesis: Considerations from biological perspective. Ann. Eye Sci. 2020, 5, 13. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Freeman, S.C.; Janot, A.C. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int. J. Retin. Vitr. 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Humayun, M.S.; Prince, M.; De Juan, E.; Barron, Y.; Moskowitz, M.; Klock, I.B.; Milam, A.H. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 1999, 40, 143–148. [Google Scholar]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res. 2016, 53, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, C.J.; Nayagam, D.; Luu, C.D.; Epp, S.B.; Williams, R.A.; Salinas-LaRosa, C.M.; Villalobos, J.; McGowan, C.; Shivdasani, M.; Burns, O.; et al. Safety Studies for a 44-Channel Suprachoroidal Retinal Prosthesis: A Chronic Passive Study. Investig. Opthalmology Vis. Sci. 2018, 59, 1410–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arevalo, J.F.; Al Rashaed, S.; Alhamad, T.A.; Al Kahtani, E.; Al-Dhibi, H.A.; Mura, M.; Nowilaty, S.; Al-Zahrani, Y.A.; Kozak, I.; Al-Sulaiman, S.; et al. Argus II retinal prosthesis for retinitis pigmentosa in the Middle East: The 2015 Pan-American Association of Ophthalmology Gradle Lecture. Int. J. Retin. Vitr. 2021, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Schippert, R.; Bartz-Schmidt, K.U.; Besch, D.; Cottriall, C.L.; Edwards, T.; Gekeler, F.; Greppmaier, U.; Kiel, K.; Koitschev, A.; et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front. Neurosci. 2017, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Flores, T.A.; Lei, X.; Huang, T.W.; Lorach, H.; Dalal, R.; Galambos, L.; Kamins, T.; Mathieson, K.; Palanker, D. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons. J. Neural Eng. 2018, 15, 036011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Braun, A.; Bruckmann, A.; Gekeler, F.; Greppmaier, U.; Hipp, S.; Hörtdörfer, G.; Kernstock, C.; et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B Boil. Sci. 2013, 280, 20130077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, J.; Yoshida, N.; Kagawa, K.; Nunoshita, M. Proposal of Application of Pulsed Vision Chip for Retinal Prosthesis. Jpn. J. Appl. Phys. 2002, 41, 2322–2325. [Google Scholar] [CrossRef]
- Jimenez-Fernandez, A.; Jimenez-Moreno, G.; Linares-Barranco, A.; Dominguez-Morales, M.J.; Paz-Vicente, R.; Civit-Balcells, A. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs. Sensors 2012, 12, 3831–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortmanns, M.; Rocke, A.; Gehrke, M.; Tiedtke, H.-J. A 232-Channel Epiretinal Stimulator ASIC. IEEE J. Solid-state Circuits 2007, 42, 2946–2959. [Google Scholar]
- Greenwald, E.; So, E.; Wang, Q.; Mollazadeh, M.; Maier, C.; Etienne-Cummings, R.; Cauwenberghs, G.; Thakor, N. A Bidirectional Neural Interface IC With Chopper Stabilized BioADC Array and Charge Balanced Stimulator. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Tan, J.S.Y.; Wu, H.; Dong, Y.; Yoo, J. 1225-Channel Neuromorphic Retinal-Prosthesis SoC With Localized Temperature-Regulation. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Furumiya, T.; Ng, D.; Yasuoka, K.; Shiraishi, F.; Kagawa, K.; Tokuda, T.; Ohta, J.; Nunoshita, M. A 16x16-Pixel Pulse-Frequency-Modulation Based Image Sensor for Retinal Prosthesis. Sensors 2004, 1, 276–279. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.; Hong, J.; Kim, J. Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices. Sensors 2023, 23, 492. https://doi.org/10.3390/s23010492
Oh Y, Hong J, Kim J. Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices. Sensors. 2023; 23(1):492. https://doi.org/10.3390/s23010492
Chicago/Turabian StyleOh, Yeonji, Jonggi Hong, and Jungsuk Kim. 2023. "Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices" Sensors 23, no. 1: 492. https://doi.org/10.3390/s23010492
APA StyleOh, Y., Hong, J., & Kim, J. (2023). Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices. Sensors, 23(1), 492. https://doi.org/10.3390/s23010492