Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor
Abstract
:1. Introduction
- We use a single IMU sensor attached to the waist to accurately detect both legs’ HS and TO time;
- We evaluate and compare the performance of different DL models including classical DL models, RNN models, and CNN-RNN hybrid models;
- We investigate the IMU sensor signals to find the ones that are most relevant to gait events and achieved higher accuracy than using all six axis information;
- We evaluate the best proposed model on healthy as well as patient data.
2. Methods
2.1. Data-Collection
2.2. Deep Learning Models
2.3. Output Post-Processing
2.4. Accuracy Measurement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IMU | Inertial measurement unit |
HMM | Hidden Markov Models |
SVM | Support Vector Machines |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
HS | Heel-strike |
TO | Toe-off |
AP | Aanteroposterior |
ML | Mediolateral |
V | Vertical |
TIL | Tilt |
OBL | Obliquity |
ROT | Rotation |
COM | Center of mass |
RHM | Remote health monitoring |
MMSE | Mini-mental state examination |
MLP | Multi-Layer Perceptron |
LSTM | Long Short-term Memory |
GRU | Gated Recurrent Unit |
Bi | Bidirectional |
Att | Attention |
AF | Linear activation function |
MAE | Mean absolute error |
ME | Mean error |
DLS | Double limb support |
SLS | Single limb support |
References
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.Z.; Jung, D.; Park, M.; Shin, H.; Kim, J.; Mun, K.R. Gait-based Frailty Assessment using Image Representation of IMU Signals and Deep CNN. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 1874–1879. [Google Scholar]
- Jung, D.; Kim, J.; Kim, M.; Won, C.W.; Mun, K.R. Classifying the Risk of Cognitive Impairment Using Sequential Gait Characteristics and Long Short-Term Memory Networks. IEEE J. Biomed. Health Inform. 2021, 25, 4029–4040. [Google Scholar] [CrossRef]
- Verghese, J.; Robbins, M.; Holtzer, R.; Zimmerman, M.; Wang, C.; Xue, X.; Lipton, R.B. Gait dysfunction in mild cognitive impairment syndromes. J. Am. Geriatr. Soc. 2008, 56, 1244–1251. [Google Scholar] [CrossRef]
- Mielke, M.M.; Roberts, R.O.; Savica, R.; Cha, R.; Drubach, D.I.; Christianson, T.; Pankratz, V.S.; Geda, Y.E.; Machulda, M.M.; Ivnik, R.J.; et al. Assessing the temporal relationship between cognition and gait: Slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J. Gerontol. Ser. Biomed. Sci. Med. Sci. 2013, 68, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Salzman, B. Gait and balance disorders in older adults. Am. Fam. Phys. 2010, 82, 61–68. [Google Scholar]
- Alexander, N.B.; Goldberg, A. Gait disorders: Search for multiple causes. Clevel. Clin. J. Med. 2005, 72, 586–589. [Google Scholar] [CrossRef]
- Moylan, K.C.; Binder, E.F. Falls in older adults: Risk assessment, management and prevention. Am. J. Med. 2007, 120, 493. [Google Scholar] [CrossRef]
- Alexander, N.B. Gait disorders in older adults. J. Am. Geriatr. Soc. 1996, 44, 434–451. [Google Scholar] [CrossRef] [Green Version]
- Sudarsky, L. Gait disorders: Prevalence, morbidity, and etiology. Adv. Neurol. 2001, 87, 111–117. [Google Scholar]
- Krebs, D.E.; Edelstein, J.E.; Fishman, S. Reliability of observational kinematic gait analysis. Phys. Ther. 1985, 65, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, D. Development of an IMU-based foot-ground contact detection (FGCD) algorithm. Ergonomics 2017, 60, 384–403. [Google Scholar] [CrossRef]
- Oudre, L.; Barrois-Müller, R.; Moreau, T.; Truong, C.; Vienne-Jumeau, A.; Ricard, D.; Vayatis, N.; Vidal, P.P. Template-based step detection with inertial measurement units. Sensors 2018, 18, 4033. [Google Scholar] [CrossRef]
- Lee, H.K.; Hwang, S.J.; Cho, S.P.; Lee, D.R.; You, S.H.; Lee, K.J.; Kim, Y.H.; Choi, H.S. Novel algorithm for the hemiplegic gait evaluation using a single 3-axis accelerometer. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3964–3966. [Google Scholar]
- Barker, S.; Craik, R.; Freedman, W.; Herrmann, N.; Hillstrom, H. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med Eng. Phys. 2006, 28, 460–467. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mannini, A.; Sabatini, A.M. Gait phase detection and discrimination between walking–jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Gait Posture 2012, 36, 657–661. [Google Scholar] [CrossRef]
- Taborri, J.; Rossi, S.; Palermo, E.; Patanè, F.; Cappa, P. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network. Sensors 2014, 14, 16212–16234. [Google Scholar] [CrossRef]
- Bae, J.; Tomizuka, M. Gait phase analysis based on a Hidden Markov Model. Mechatronics 2011, 21, 961–970. [Google Scholar] [CrossRef]
- Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients. Sensors 2016, 16, 134. [Google Scholar] [CrossRef] [Green Version]
- Hannink, J.; Kautz, T.; Pasluosta, C.F.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 2016, 21, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.H.; Shih, C.L.; Wong, D.P.; Chou, P.H. Gait Parameters Analysis Based on Leg-and-shoe-mounted IMU and Deep Learning. In Proceedings of the 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 19–21 April 2021; pp. 1–4. [Google Scholar]
- Inman, V.T.; Eberhart, H.D. The major determinants in normal and pathological gait. JBJS 1953, 35, 543–558. [Google Scholar]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, R.; Lebleu, J.; Willems, T.; De Blaiser, C.; Detrembleur, C.; Roosen, P. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J. Sport Rehabil. 2019, 28. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E.; Malmstrom, T.; Miller, D. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 2012, 16, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait partitioning methods: A systematic review. Sensors 2016, 16, 66. [Google Scholar] [CrossRef] [Green Version]
- Jasiewicz, J.M.; Allum, J.H.; Middleton, J.W.; Barriskill, A.; Condie, P.; Purcell, B.; Li, R.C.T. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Whittle, M.W. Gait Analysis: An Introduction; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Graves, A. Supervised sequence labelling. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Cham, Switzerland, 2012; pp. 5–13. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Sarshar, M.; Polturi, S.; Schega, L. Gait phase estimation by using LSTM in IMU-based gait analysis—Proof of concept. Sensors 2021, 21, 5749. [Google Scholar] [CrossRef]
- Fadillioglu, C.; Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm. Gait Posture 2020, 81, 102–108. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, J.; Zhou, X.; Liu, K.; Yan, Y. Gait Phase Detection Based on a Foot-Mounted Inertial Sensor Using Long Short-Term Memory Enhanced by Hidden Markov Model. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021; pp. 1–5. [Google Scholar]
- González, R.C.; López, A.M.; Rodriguez-Uría, J.; Alvarez, D.; Alvarez, J.C. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31, 322–325. [Google Scholar] [CrossRef] [PubMed]
- McCamley, J.; Donati, M.; Grimpampi, E.; Mazza, C. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. Gait Posture 2012, 36, 316–318. [Google Scholar] [CrossRef]
- Soaz, C.; Diepold, K. Step detection and parameterization for gait assessment using a single waist-worn accelerometer. IEEE Trans. Biomed. Eng. 2015, 63, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Ghislieri, M.; Rosati, S.; Balestra, G.; Knaflitz, M. Surface electromyography applied to gait analysis: How to improve its impact in clinics? Front. Neurol. 2020, 11, 994. [Google Scholar] [CrossRef]
- Morbidoni, C.; Cucchiarelli, A.; Fioretti, S.; Di Nardo, F. A deep learning approach to EMG-based classification of gait phases during level ground walking. Electronics 2019, 8, 894. [Google Scholar] [CrossRef]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A. Walking gait event detection based on electromyography signals using artificial neural network. Biomed. Signal Process. Control 2019, 47, 334–343. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis—Normal and Pathological Function, 2nd ed.; Slack: San Francisco, CA, USA, 2010. [Google Scholar]
Characteristic | All Subjects n = 169 | Healthy Subjects n = 94 | Patients n = 75 |
---|---|---|---|
Age (years), Mean ± SD(Range) | 74.89 ± 5.08 (60–87) | 74.66 ± 4.75 (64–87) | 75.17 ± 5.48 (60–87) |
Height (cm), Mean ± SD(Range) | 159.67 ± 7.23 (141.9–171) | 160.5 ± 7.01 (141.9–171) | 155.65 ± 7.55 (151.3–170.4) |
Weight (kg), Mean ± SD(Range) | 61.1 ± 9.34 (42.3–91) | 62.01 ± 9.69 (42.3–91) | 59.92 ± 8.79 (42.5–80) |
Gender | |||
- Male n (%) | 68 (40.24%) | 42 (44.68%) | 26 (34.67%) |
- Female n (%) | 101 (59.77%) | 52 (55.32%) | 49 (65.34%) |
Temporal gait pars. | |||
- DLS1 (s), Mean (SD) | 0.096 (0.027) | 0.093 (0.025) | 0.101 (0.028) |
- SLS_R (s), Mean (SD) | 0.408 (0.027) | 0.405 (0.024) | 0.41 (0.031) |
- DLS2 (s), Mean (SD) | 0.101 (0.026) | 0.095 (0.021) | 0.108 (0.029) |
- SLS_L (s), Mean (SD) | 0.402 (0.025) | 0.401 (0.023) | 0.404 (0.028) |
- STEP (s), Mean (SD) | 0.504 (0.045) | 0.498 (0.042) | 0.511 (0.049) |
- STANCE (s), Mean (SD) | 0.605 (0.062) | 0.593 (0.054) | 0.62 (0.069) |
- STRIDE (s), Mean (SD) | 1.007 (0.08) | 0.994 (0.071) | 1.023 (0.089) |
Model | ±1 TS | ±2 TS | ±3 TS | ±4 TS | ±5 TS | ±6 TS |
---|---|---|---|---|---|---|
CNN-BiGRU-Att | 93.89 | 98.29 | 99.02 | 99.46 | 99.64 | 99.73 |
CNN-BiLSTM | 93.68 | 98.28 | 99.14 | 99.48 | 99.68 | 99.76 |
CNN-BiLSTM-Att | 93.52 | 98.21 | 99.02 | 99.46 | 99.64 | 99.70 |
CNN-BiGRU | 93.27 | 98.19 | 99.10 | 99.41 | 99.56 | 99.73 |
stacked-LSTM-Att | 92.71 | 97.60 | 98.91 | 99.31 | 99.49 | 99.59 |
CNN-GRU | 92.33 | 97.82 | 98.93 | 99.40 | 99.57 | 99.65 |
CNN-LSTM | 91.77 | 97.89 | 98.94 | 99.44 | 99.61 | 99.76 |
stacked-GRU-Att | 91.67 | 97.54 | 98.68 | 99.30 | 99.59 | 99.65 |
BiGRU | 89.99 | 97.08 | 98.76 | 99.35 | 99.55 | 99.64 |
stacked-GRU | 88.86 | 96.51 | 98.53 | 99.24 | 99.51 | 99.60 |
stacked-LSTM | 88.04 | 96.64 | 98.53 | 99.18 | 99.47 | 99.59 |
BiLSTM | 86.54 | 95.98 | 98.17 | 99.02 | 99.35 | 99.51 |
GRU | 78.98 | 92.70 | 96.72 | 98.32 | 99.13 | 99.47 |
LSTM | 76.83 | 91.61 | 96.21 | 98.18 | 98.89 | 99.24 |
MLP | 69.55 | 86.57 | 92.88 | 95.73 | 97.05 | 97.53 |
CNN | 68.58 | 87.23 | 94.25 | 96.76 | 98.01 | 98.56 |
No. of Input Signals | Input | ±1 TS | ±2 TS | ±3 TS | ±4 TS | ±5 TS | ±6 TS |
---|---|---|---|---|---|---|---|
1 | [AP] | 20.57 | 27.75 | 32.12 | 34.65 | 36.26 | 37.52 |
[ML] | 60.12 | 79.12 | 88.20 | 92.57 | 94.80 | 96.14 | |
[V] | 15.37 | 21.60 | 25.12 | 27.47 | 28.83 | 29.74 | |
[TIL] | 24.52 | 33.52 | 38.65 | 41.89 | 44.03 | 45.42 | |
[OBL] | 15.52 | 24.05 | 31.13 | 36.47 | 40.53 | 43.18 | |
[ROT] | 58.00 | 75.96 | 84.42 | 88.45 | 90.72 | 92.09 | |
2 | [AP, ML] | 88.16 | 97.12 | 98.66 | 99.14 | 99.45 | 99.65 |
[AP, ROT] | 87.23 | 95.45 | 97.61 | 98.66 | 99.27 | 99.45 | |
3 | [AP, ML, TIL] | 90.15 | 97.28 | 98.68 | 99.21 | 99.60 | 99.70 |
[AP, ML, ROT] | 90.28 | 97.34 | 98.86 | 99.18 | 99.50 | 99.68 | |
4 | [AP, ML, V, TIL] | 93.40 | 98.25 | 98.95 | 99.30 | 99.60 | 99.68 |
[AP, ML, V, ROT] | 94.11 | 98.48 | 99.13 | 99.46 | 99.68 | 99.79 | |
5 | [AP, ML, V, TIL, OBL] | 87.97 | 96.57 | 98.31 | 99.14 | 99.49 | 99.62 |
[AP, ML, V, TIL, ROT] | 93.89 | 98.04 | 98.97 | 99.53 | 99.73 | 99.84 | |
[AP, ML, V, OBL, ROT] | 93.99 | 98.28 | 98.94 | 99.38 | 99.68 | 99.81 | |
6 | [AP, ML, V, TIL, OBL, ROT] | 93.89 | 98.29 | 99.02 | 99.46 | 99.64 | 99.73 |
Input Signals | Training | Testing | ±1 TS | ±2 TS | ±3 TS | ±4 TS | ±5 TS | ±6 TS |
---|---|---|---|---|---|---|---|---|
[AP, ML, V, TIL, OBL, ROT] | HS | HS | 93.89 | 98.29 | 99.02 | 99.46 | 99.64 | 99.73 |
HS | P | 63.10 | 84.09 | 93.30 | 96.94 | 98.44 | 99.05 | |
Mixed | Mixed | 93.63 | 98.04 | 98.85 | 99.21 | 99.44 | 99.59 | |
[AP, ML, V, ROT] | HS | HS | 94.11 | 98.48 | 99.13 | 99.46 | 99.68 | 99.79 |
HS | P | 62.78 | 83.63 | 92.40 | 96.25 | 97.97 | 98.69 | |
Mixed | Mixed | 92.80 | 97.91 | 98.95 | 99.30 | 99.52 | 99.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, M.Z.; Jamsrandorj, A.; Kim, J.; Mun, K.-R. Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor. Sensors 2022, 22, 8226. https://doi.org/10.3390/s22218226
Arshad MZ, Jamsrandorj A, Kim J, Mun K-R. Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor. Sensors. 2022; 22(21):8226. https://doi.org/10.3390/s22218226
Chicago/Turabian StyleArshad, Muhammad Zeeshan, Ankhzaya Jamsrandorj, Jinwook Kim, and Kyung-Ryoul Mun. 2022. "Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor" Sensors 22, no. 21: 8226. https://doi.org/10.3390/s22218226
APA StyleArshad, M. Z., Jamsrandorj, A., Kim, J., & Mun, K.-R. (2022). Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor. Sensors, 22(21), 8226. https://doi.org/10.3390/s22218226