The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment
Abstract
:1. Introduction
2. System Framework
3. LIDAR Point Cloud Preprocessing
3.1. Point Cloud Filtering
3.2. Ground Treatment
4. Mapping and Navigation
4.1. Drawing Construction
4.2. Planning Algorithm
5. Experiment and Analysis
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Yang, Y.; Yu, J.; Zhang, Z.; Xia, Z.; Zhu, J.; Zhang, H. Artificial Intelligence of Manufacturing Robotics Health Monitoring System by Semantic Modeling. Micromachines 2022, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yu, L.; Chen, Z.; Fei, S. A Mono SLAM Method Based on Depth Estimation by DenseNet-CNN. IEEE Sensors J. 2021, 22, 2447–2455. [Google Scholar] [CrossRef]
- Buemi, A.; Bruna, A.; Petinot, S.; Roux, N. ORB-SLAM with Near-infrared images and Optical Flow data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 1799–1804. [Google Scholar]
- Balasuriya, B.L.E.A.; Chathuranga, B.A.H.; Jayasundara, B.H.M.D.; Napagoda, N.R.A.C.; Kumarawadu, S.P.; Chandima, D.P.; Jayasekara, A.G.B.P. Outdoor robot navigation using Gmapping based SLAM algorithm. In Proceedings of the 2016 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 5–6 April 2016; pp. 403–408. [Google Scholar]
- Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B.; Konolige, K. The office marathon: Robust navigation in an indoor office environment. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010. [Google Scholar]
- Turchi, P. Maps of the Imagination: The Writer as Cartographer; Trinity University Press: San Antonio, TX, USA, 2011. [Google Scholar]
- Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 5770–5774. [Google Scholar]
- Handschin, J.E.; Mayne, D.Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control. 1969, 9, 547–559. [Google Scholar] [CrossRef]
- Pan, Y. Dynamic Update of Sparse Voxel Octree Based on Morton Code; Purdue University Graduate School: West Lafayette, IN, USA, 2021. [Google Scholar]
- Wang, L.; Yu, F. Jackknife resample method for precision estimation of weighted total least squares. Commun. Stat. Simul. Comput. 2021, 50, 1272–1289. [Google Scholar] [CrossRef]
- Labb, M.; Michaud, F. RTABMap as an opensource lidar and visual simultaneous localization and mapping library for largescale and longterm online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Aonuma, S.; Hasegawa, Y. Dynamic Window Approach with Human Imitating Collision Avoidance. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8180–8186. [Google Scholar]
- Rigatos, G. A nonlinear optimal control approach for tracked mobile robots. J. Syst. Sci. Complex. 2021, 34, 1279–1300. [Google Scholar] [CrossRef]
- Lai, X.; Li, J.H.; Chambers, J. Enhanced center constraint weighted a* algorithm for path planning of petrochemical inspection robot. J. Intell. Robot. Syst. 2021, 102, 1–15. [Google Scholar] [CrossRef]
- Rivera, Z.B.; De Simone, M.C.; Guida, D. Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 2019, 7, 42. [Google Scholar] [CrossRef] [Green Version]
Scene | After Improvement(s) | Standard A* Algorithm(s) |
---|---|---|
Gas station | 3 | 5 |
Office | 6 | 9.2 |
Narrow road | 2 | 3.9 |
Sense 1 | Sense 2 | Sense 3 | |
---|---|---|---|
Unsampling filter | 307 s | 210 s | 502 s |
Downsampling filter | 270 s | 192 s | 454 s |
Initial | Set End | Actual Arrival | X | Y | Angular |
---|---|---|---|---|---|
Coordinates(m) | Coordinates(m) | Coordinates(m) | Error(m) | Error(m) | Error(rad) |
0,0,0 | 3,3,3.14 | 2.99,3,3.13 | 0.01 | 0 | 0.01 |
0,0,0 | 6,6,3.14 | 5.98,5.99,3.14 | 0.02 | 0.01 | 0 |
0,0,0 | 9,9,3.14 | 9,8.98,3.12 | 0 | 0.02 | 0.02 |
3,3,0 | 0,0,3.14 | 0.01,0.01,3.13 | 0.01 | 0.01 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, Y.; Li, H.; Hao, H.; Chen, W.; Zhan, W. The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment. Sensors 2022, 22, 7794. https://doi.org/10.3390/s22207794
Zhang Y, Zhou Y, Li H, Hao H, Chen W, Zhan W. The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment. Sensors. 2022; 22(20):7794. https://doi.org/10.3390/s22207794
Chicago/Turabian StyleZhang, Yang, Yanjun Zhou, Hehua Li, Hao Hao, Weijiong Chen, and Weiwei Zhan. 2022. "The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment" Sensors 22, no. 20: 7794. https://doi.org/10.3390/s22207794
APA StyleZhang, Y., Zhou, Y., Li, H., Hao, H., Chen, W., & Zhan, W. (2022). The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment. Sensors, 22(20), 7794. https://doi.org/10.3390/s22207794