JDAPCOO: Resource Scheduling and Energy Efficiency Optimization in 5G and Satellite Converged Networks for Power Transmission and Distribution Scenarios
Abstract
:1. Introduction
- Combined with the actual application scenarios of PDs, this paper proposes a 5G and satellite converged network architecture for power transmission and distribution scenarios, where PDs can choose to forward power data to cloud server data centers via ground networks or space-based networks. Among them, a UAV is introduced as a relay between PDs and satellite to ensure the stability of system transmission.
- On the premise of ensuring the minimum transmission rate requirements of PDs, we propose an online optimization algorithm of joint device association and power control, including a device association strategy based on a genetic algorithm and device power control scheme based on an improved simulated annealing algorithm. By solving the device association strategy and power control scheme in each time slot, the long-term total system energy efficiency is maximized.
- We conduct extensive simulations to compare our algorithm with several benchmark algorithms. The results show that our solution has better performance.
2. Related Works
3. System Model and Problem Modeling
3.1. System Model
- Power transmission and distribution device (PD): run different power services and generate a variety of power data that need to be uploaded to the cloud server data center.
- UAV: as a relay for data forwarding of PDs, which is used to forward the power data from the PDs to the cloud server data center of an LEO satellite.
- 5G base station: equipped with a cloud server data center, which is used to receive power data from PDs that need to be uploaded to the cloud server data center.
- LEO satellite: equipped with a cloud server data center to receive power data forwarded by the UAV that need to be uploaded to the cloud server data center.
3.2. Problem Modeling
4. Problem Solution
4.1. Device Association Strategy
Algorithm 1: Genetic algorithm-based device association strategy |
|
4.2. Power Control Scheme
Algorithm 2: Improved power control scheme based on simulated annealing algorithm |
|
4.3. Joint Device Association and Power Control Online Optimization Algorithm
Algorithm 3: Joint Device Association and Power Control Online Optimization (JDAPCOO) algorithm |
|
5. Simulation Results
- Equal power allocation algorithm [38]: The power of all PDs is set as the same value within the maximum power range. For the convenience of comparison with the JDAPCOO algorithm in this paper, the device association strategy still adopts the algorithm proposed in this paper.
- Random device association algorithm: All PDs are randomly associated with the UAV or ground 5G base station. In order to show the superiority of the device association strategy in this paper, the power control scheme of PDs is the same as that in this paper.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedi, G.; Enayagamoorthy, G.K.V.; Singh, R.; Brooks, R.R.; Wang, K. Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Qin, P.; Geng, S.; Meng, S. Joint Dynamic Task Offloading and Resource Scheduling for WPT Enabled Space-Air-Ground Power Internet of Things. IEEE Trans. Netw. Sci. Eng. 2022, 9, 660–677. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Wei, Z.; Pan, C.; Zhang, H.; Ren, Y. Joint UAV Hovering Altitude and Power Control for Space-Air-Ground IoT Networks. IEEE Internet Things J. 2019, 6, 1741–1753. [Google Scholar] [CrossRef]
- Coronado, E.; Khan, S.N.; Riggio, R. 5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 715–728. [Google Scholar] [CrossRef]
- Cherrared, S.; Imadali, S.; Fabre, E.; Gössler, G.; Yahia, I.G.B. A Survey of Fault Management in Network Virtualization Environments: Challenges and Solutions. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1537–1551. [Google Scholar] [CrossRef]
- Dai, C.-Q.; Zhang, M.; Li, C.; Zhao, J.; Chen, Q. QoE-Aware Intelligent Satellite Constellation Design in Satellite Internet of Things. IEEE Internet Things J. 2021, 8, 4855–4867. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance Limits of Cognitive-Uplink FSS and Terrestrial FS for Ka-Band. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2604–2611. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2019, 6, 2241–2263. [Google Scholar] [CrossRef]
- Elhattab, M.K.; Elmesalawy, M.M.; Salem, F.M.; Ibrahim, I.I. Device-Aware Cell Association in Heterogeneous Cellular Networks: A Matching Game Approach. IEEE Trans. Green Commun. Netw. 2019, 3, 57–66. [Google Scholar] [CrossRef]
- Vu, H.V.; Tran, N.H.; Le-Ngoc, T. Full-Duplex Device-to-Device Cellular Networks: Power Control and Performance Analysis. IEEE Trans. Veh. Technol. 2019, 68, 3952–3966. [Google Scholar] [CrossRef]
- Kapovits, A.; Corici, M.; Gheorghe-Pop, I.; Gavras, A.; Burkhardt, F.; Schlichter, T.; Covaci, S. Satellite communications integration with terrestrial networks. China Commun. 2018, 15, 22–38. [Google Scholar] [CrossRef]
- 3GPP TR 38.811. Study on New Radio (NR) to Support Non Terrestrial Networks; 3GPP: Sophia Antipolis, France, 2018. [Google Scholar]
- Ge, C.; Wang, N.; Selinis, I.; Cahill, J.; Kavanagh, M.; Liolis, K.; Politis, C.; Nunes, J.; Evans, B.; Rahulan, Y.; et al. QoE-Assured Live Streaming via Satellite Backhaul in 5G Networks. IEEE Trans. Broadcast. 2019, 65, 381–391. [Google Scholar] [CrossRef]
- Boero, L.; Marchese, M.; Patrone, F. The impact of delay in software-defined integrated terrestrial-satellite networks. China Commun. 2018, 15, 11–21. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyan, J.; Zhu, W.-P. Secure Transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Lin, X.; Su, G.; Chen, B.; Wang, H.; Dai, M. Striking a balance between system throughput and energy efficiency for UAV-IoT systems. IEEE Internet Things J. 2019, 6, 10519–10533. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Bagaa, M.; Taleb, T. Energy and delay aware task assignment mechanism for UAV-based IoT platform. IEEE Internet Things J. 2019, 6, 6523–6536. [Google Scholar] [CrossRef]
- Qin, P.; Fu, Y.; Zhao, X.; Wu, K.; Liu, J.; Wang, M. Optimal Task Offloading and Resource Allocation for C-NOMA Heterogeneous Air-Ground Integrated Power-IoT Networks. IEEE Trans. Wirel. Commun. 2022, in press. [Google Scholar] [CrossRef]
- Qin, P.; Fu, Y.; Tang, G.; Zhao, X.; Geng, S. Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing. IEEE Trans. Veh. Technol. 2022, 71, 8398–8413. [Google Scholar] [CrossRef]
- Kaleem, Z.; Chang, K. Public Safety Priority-Based User Association for Load Balancing and Interference Reduction in PS-LTE Systems. IEEE Access 2016, 4, 9775–9785. [Google Scholar] [CrossRef]
- Mlika, Z.; Driouch, E.; Ajib, W. Energy-Efficient Base Station Operation and Association in HetNets: Complexity and Algorithms. IEEE Trans. Wirel. Commun. 2018, 17, 2690–2702. [Google Scholar] [CrossRef]
- Qin, P.; Fu, Y.; Feng, X.; Zhao, X.; Wang, S.; Zhou, Z. Energy Efficient Resource Allocation for Parked-Cars-Based Cellular-V2V Heterogeneous Networks. IEEE Internet Things J. 2022, 9, 3046–3061. [Google Scholar] [CrossRef]
- PQin; Zhu, Y.; Zhao, X.; Feng, X.; Liu, J.; Zhou, Z. Joint 3D Location Planning and Resource Allocation for XAPS-Enabled CNOMA in 6G Heterogeneous Internet of Things. IEEE Trans. Veh. Technol. 2021, 70, 10594–10609. [Google Scholar]
- Zhang, H.; Liu, H.; Cheng, J.; Leung, V.C.M. Downlink Energy Efficiency of Power Allocation and Wireless Backhaul Bandwidth Allocation in Heterogeneous Small Cell Networks. IEEE Trans. Commun. 2018, 66, 1705–1716. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, H.; Long, K.; Huang, Y.; Song, X.; Leung, V.C.M. Energy-Efficient Power Allocation with Interference Mitigation in MmWave-Based Fog Radio Access Networks. IEEE Wirel. Commun. 2018, 25, 25–31. [Google Scholar] [CrossRef]
- Efrem, C.N.; Panagopoulos, A.D. A Framework for Weighted-Sum Energy Efficiency Maximization in Wireless Networks. IEEE Wirel. Commun. Lett. 2019, 8, 153–156. [Google Scholar] [CrossRef]
- Ren, T.; Niu, J.; Dai, B.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile-Edge Computing via Hierarchical Reinforcement Learning. IEEE Internet Things J. 2022, 9, 7095–7109. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization. IEEE Internet Things J. 2020, 7, 2777–2790. [Google Scholar] [CrossRef]
- Zhao, X.; Du, F.; Geng, S.; Fu, Z.; Wang, Z.; Zhang, Y.; Zhou, Z.; Zhang, L.; Yang, L. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework. IEEE J. Sel. Areas Commun. 2020, 38, 1945–1954. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rahmat-Samii, V. Genetic algorithms in engineering electromagnetics. IEEE Antennas Propag. Mag. 1997, 39, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Jang, D.; Kang, S.; Lee, J.; Chung, T.; Kim, H. Hybrid Algorithm Combing Genetic Algorithm with Evolution Strategy for Antenna Design. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C.M. An Efficient Computation Offloading Management Scheme in the Densely Deployed Small Cell Networks with Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [Google Scholar] [CrossRef]
- Alfonzetti, S.; Dilettoso, E.; Salerno, N. Simulated annealing with restarts for the optimization of electromagnetic devices. IEEE Trans. Magn. 2006, 42, 1115–1118. [Google Scholar] [CrossRef]
- Okoli, F.; Bert, J.; Abdelaziz, S.; Boussion, N.; Visvikis, D. Optimizing the Beam Selection for Noncoplanar VMAT by Using Simulated Annealing Approach. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 609–618. [Google Scholar] [CrossRef]
- Li, C.; You, F.; Yao, T.; Wang, J.; Shi, W.; Peng, J.; He, S. Simulated Annealing Particle Swarm Optimization for High-Efficiency Power Amplifier Design. IEEE Trans. Microw. Theory Tech. 2021, 69, 2494–2505. [Google Scholar] [CrossRef]
- Lee, H.; Modiano, E.; Le, L.B. Distributed Throughput Maximization in Wireless Networks via Random Power Allocation. IEEE Trans. Mob. Comput. 2012, 11, 577–590. [Google Scholar]
- Lu, P.; Zhang, L.; Liu, X.; Yao, J.; Zhu, Z. Highly Efficient Data Migration and Backup for Big Data Applications in Elastic Optical Inter-Data-Center Networks. IEEE Netw. 2015, 29, 36–42. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
I | 50∼400 | W | 90 kHz |
T | 100 s | −127 dBm/Hz | |
1 s | 46 dBm | ||
90 m | 75 | ||
1.4 | 75 | ||
200 km | 40 dBm | ||
l | 4 | 10 Mbps |
Parameter | Value |
---|---|
90 | |
0.1 | |
0.3 | |
1500 |
Parameter | Value |
---|---|
1 | |
0.999 | |
0.999 | |
0.5 | |
6932 |
Different Algorithms | Number of PDs | |||||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | |
JDAPCOO | ||||||||
algorithm | 3.23 | 5.82 | 9.36 | 1.13 | 1.25 | 1.57 | 1.74 | 1.97 |
Equal power | ||||||||
allocation algorithm | 3.46 | 6.76 | 9.93 | 1.33 | 1.68 | 2.01 | 2.34 | 2.71 |
Random power | ||||||||
allocation algorithm | 5.02 | 9.08 | 1.36 | 1.93 | 2.63 | 3.38 | 3.70 | 4.18 |
Random device | ||||||||
association algorithm | 1.58 | 3.05 | 2.94 | 3.30 | 3.95 | 3.90 | 4.61 | 5.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Zhu, S.; Wang, Z.; Zhang, R.; Han, J.; Liu, J.; Sun, H.; Qin, P.; Zhao, X. JDAPCOO: Resource Scheduling and Energy Efficiency Optimization in 5G and Satellite Converged Networks for Power Transmission and Distribution Scenarios. Sensors 2022, 22, 7085. https://doi.org/10.3390/s22187085
Meng S, Zhu S, Wang Z, Zhang R, Han J, Liu J, Sun H, Qin P, Zhao X. JDAPCOO: Resource Scheduling and Energy Efficiency Optimization in 5G and Satellite Converged Networks for Power Transmission and Distribution Scenarios. Sensors. 2022; 22(18):7085. https://doi.org/10.3390/s22187085
Chicago/Turabian StyleMeng, Sachula, Sicheng Zhu, Zhihui Wang, Ruibing Zhang, Jinxia Han, Jiayan Liu, Haoran Sun, Peng Qin, and Xiongwen Zhao. 2022. "JDAPCOO: Resource Scheduling and Energy Efficiency Optimization in 5G and Satellite Converged Networks for Power Transmission and Distribution Scenarios" Sensors 22, no. 18: 7085. https://doi.org/10.3390/s22187085
APA StyleMeng, S., Zhu, S., Wang, Z., Zhang, R., Han, J., Liu, J., Sun, H., Qin, P., & Zhao, X. (2022). JDAPCOO: Resource Scheduling and Energy Efficiency Optimization in 5G and Satellite Converged Networks for Power Transmission and Distribution Scenarios. Sensors, 22(18), 7085. https://doi.org/10.3390/s22187085