Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review
Abstract
:1. Introduction
- DASS-21: A stress assessment instrument composed of 21 questions, which in many cases may be adapted to specific populations. Response scores are classified into five stress levels: normal, mild, moderate, severe, and extremely severe. In addition, this technique provides in the same questionnaire different outcome punctuations for depression and anxiety.
- Perceived Stress Scale (PSS): A classical instrument for stress assessment. The answers present three levels of score stress classification: low stress, moderate stress, and high perceived stress.
- Coping Inventory for Stressful Situations (CISS): A 48-item measure comprising a three-scale task, emotional and avoidance.
2. Methods
- (RQ1) What methods, techniques, and architectures have been employed in investigations related to the use of smartwatches to monitor stress?
- (RQ2) Which stress levels are used in the investigations?
- (RQ3) What are the measured data? Are they physiological, mental, or emotional measurements?
- (RQ4) What AI techniques are applied to the stress ratings? (Where relevant).
2.1. Adopted Criteria and Selection Procedures
2.2. Selection Process
2.3. Selected Articles
2.4. Distribution of Articles by Publication Date and Location
3. Results
3.1. Answer RQ1
3.2. Answer RQ2
3.3. Answer RQ3
3.4. Answer RQ4
4. Discussion
4.1. Wearable Chemical Sensors
4.2. Critical Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Accelerometers |
BVP | Blood Volume Pulse |
CNN | Convolutional Neural Network |
CNN-LSTM | Convolutional Neural Network with Long–Short Term Memory |
DA | Discriminant Analysis |
DT | Decision Trees |
EC | Ensemble Classifiers |
EDA | Electrodermal Activity |
FCN | Fully Convolutional Network |
GB | Gradient Boosting |
GBA | Gradient Boosting AdaBoost |
GSR | Galvanic Skin Rate |
HRV | Heart Rate Variability |
KNN | K-Nearest Neighbor |
LR | Logistic Regression |
MDCNN | Multichannel Deep Convolutional Neural Network |
MLP | Multilayer Perceptron |
MLP-LSTM | Multilayer Perceptron with Long–Short Term Memory |
NB | Naïve Bayes |
Oxi | Oximetry |
PPG | Photoplethysmogram |
RESNET | Residual Network |
RF | Random Forest |
RL | Linear Regression |
ST | Skin Temperature |
STRESNET | Spectrotemporal Residual Network |
SVM | Support Vector Machine |
Time-CNN | Time Convolutional Neural Network |
XGB | Extreme Gradient Boosting |
References
- De Pablo, G.S.; Vaquerizo-Serrano, J.; Catalan, A.; Arango, C.; Moreno, C.; Ferre, F.; Shin, J.I.; Sullivan, S.; Brondino, N.; Solmi, M.; et al. Impact of coronavirus syndromes on physical and mental health of health care workers: Systematic review and meta-analysis. J. Affect. Disord. 2020, 275, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, A.; Aztiria, A.; Basarab, A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inform. 2016, 59, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Thapliyal, B.H.; Khalus, V.; Labrado, C. Stress Detection and Management: A survey of wearable smart health devices. IEEE Consum. Electron. Mag. 2017, 6, 64–69. [Google Scholar] [CrossRef]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Del Ry, S.; Cavallo, F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 2017, 65, 1748–1758. [Google Scholar] [CrossRef]
- Rice, P.; Upasham, S.; Jagannath, B.; Manuel, R.; Pali, M.; Prasad, S. CortiWatch: Watch-based cortisol tracker. Future Sci. OA 2019, 5, FSO416. [Google Scholar] [CrossRef]
- Mendonça, H.; Zanini, D.S.; De Sousa, I.F.; Nazareno, E. Estresse ocupacional, coping e burnout. Rev. EVS-Rev. Ciências Ambient. Saúde 2009, 36, 57–74. [Google Scholar]
- Coghi, M.F.; Coghi, P.F. Stress e Ansiedade: Eles Estão te Consumindo? In Proceedings of the Congresso de Stress do ISMA, Porto Alegre, Brazil, 3–5 June 2013; Available online: http://www.cardioemotion.com.br/wp-content/uploads/2016/04/STRESS-E-ANSIEDADE-ELES-ESTÃO-TE-CONSUMINDO-ISMA-2014.pdf (accessed on 20 September 2021).
- Theme, M.M.; Costa, M.A.; de Guilam, M.C.R. Occupational Stress and Self-Rated Health among Nurses. Rev. Lat. Am. Enferm. 2013, 21, 475–483. [Google Scholar] [CrossRef]
- Dzieżyc, M.; Gjoreski, M.; Kazienko, P.; Saganowski, S.; Gams, M. Can we ditch feature engineering? End-to-end deep learning for affect recognition from physiological sensor data. Sensors 2020, 20, 6535. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Suryadevara, N.K.; Nag, A. Wearable Sensors for Healthcare: Fabrication to Application. Sensors 2022, 22, 5137. [Google Scholar] [CrossRef]
- Al-eidan, R.M.; Al-khalifa, H.; Al-salman, A.M. A Review of Wrist-Worn Wearable: Sensors, Models, and Challenges. J. Sens. 2018, 2018, 5853917. [Google Scholar] [CrossRef] [Green Version]
- Sreeja, P.S.; Mahalakshmi, G.S. Emotion Models: A Review. Int. J. Control Theory Appl. 2017, 10, 651–657. [Google Scholar]
- Car, J.; Tan, W.S.; Huang, Z.; Sloot, P.; Franklin, B.D. eHealth in the future of medications management: Personalisation, monitoring and adherence. BMC Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Qadri, Y.A.; Nauman, A.; Bin Zikria, Y.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Morales, A.S.; Ourique, F.D.O.; Cazella, S.C. A Comprehensive Review on the Challenges for Intelligent Systems Related with Internet of Things for Medical Decision. In Enhanced Telemedicine and e-Health; Marques, G., Kumar Bhoi, A., de la Torre Díez, I., Garcia-Zapirain, B., Eds.; Studies in Fuzziness and Soft Computing Series 410; Springer: Cham, Switzerland, 2021; pp. 221–240. [Google Scholar] [CrossRef]
- Besirli, A.; Celik, S.; Atilgan, M.; Varlihan, A.; Habaci, M.F.; Yenieri, T.; Isler, A.C.; Kizileroglu, S.; Ozturk, G.; Ozer, O.A.; et al. The Relationship Between Anxiety and Depression Levels with Perceived Stress and Coping Strategies in Health Care Workers During The COVID-19 Pandemic. Med. Bull. Sisli Etfal Hosp. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Batista, P.; Afonso, A.; Lopes, M.; Fonseca, C.; Oliveira-Silva, P.; Pereira, A.; Pinho, L. Anxiety and Coping Stress Strategies in Researchers during COVID-19 Pandemic. Front. Public Health 2022, 10, 1020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Yang, B. Continuous Stress Detection of Hospital Staff Using Smartwatch Sensors and Classifier Ensemble; IOS Press: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Pérez, F.D.A.; Santos-Gago, J.M.; Caeiro-Rodriguez, M.; Iglesias, M.J.F. Evaluation of commercial-off-the-shelf wrist wearables to estimate stress on students. J. Vis. Exp. 2018, 136, e57590. [Google Scholar] [CrossRef]
- Vila, G.; Godin, C.; Sakri, O.; Labyt, E.; Vidal, A.; Charbonnier, S.; Ollander, S.; Campagne, A. Real-Time Monitoring of Passenger’s Psychological Stress. Future Internet 2019, 11, 102. [Google Scholar] [CrossRef]
- Hao, T.; Walter, K.N.; Ball, M.J.; Chang, H.Y.; Sun, S.; Zhu, X. StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches. AMIA Annu. Symp. Proc. 2017, 2017, 830–838. [Google Scholar]
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A Survey of Affective Computing for Stress Detection. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar] [CrossRef]
- Can, Y.S.; Chalabianloo, N.; Ekiz, D.; Fernandez-Alvarez, J.; Riva, G.; Ersoy, C. Personal Stress-Level Clustering and Decision-Level Smoothing to Enhance the Performance of Ambulatory Stress Detection with Smartwatches. IEEE Access 2020, 8, 38146–38163. [Google Scholar] [CrossRef]
- Jin, J.; Gao, B.; Yang, S.; Zhao, B.; Luo, L.; Woo, W.L. Attention-Block Deep Learning Based Features Fusion in Wearable Social Sensor for Mental Wellbeing Evaluations. IEEE Access 2020, 8, 89258–89268. [Google Scholar] [CrossRef]
- Han, H.J.; Labbaf, S.; Borelli, J.L.; Dutt, N.; Rahmani, A.M. Objective stress monitoring based on wearable sensors in everyday settings. J. Med. Eng. Technol. 2020, 44, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Gjoreski, M.; Kolenik, T.; Knez, T.; Luštrek, M.; Gams, M.; Gjoreski, H.; Pejović, V. Datasets for Cognitive Load Inference Using Wearable Sensors and Psychological Traits. Appl. Sci. 2020, 10, 3843. [Google Scholar] [CrossRef]
- Wilbur, R.E.; Griffin, J.S.; Sorensen, M.; Furberg, R.D. Establishing Digital Biomarkers for Occupational Health Assessment in Commercial Salmon Fishermen: Protocol for a Mixed-Methods Study. JMIR Res. Protoc. 2018, 7, e10215. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.V.M.; Dalri, R.C.M.B.; Bardaquim, V.A.; Robazzi, M.L.C.C. Biomarkers as innovative trend for aid in the diagnosis of mental diseases among workers. Rev. Bras. Med. Trab. 2018, 16, 371–377. [Google Scholar] [CrossRef]
- Rodas, P.A.; Zambrano, C.F.; Guerrero, J.J.; Galarza, C.R. Workers’ health disorders: Burnout syndrome on public servers. Australas. Med J. 2018, 11, 343–351. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Jeerapan, I.; Krishnan, S.; Wang, J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal. Chem. 2019, 92, 378–396. [Google Scholar] [CrossRef]
- Samson, C.; Koh, A. Stress Monitoring and Recent Advancements in Wearable Biosensors. Front. Bioeng. Biotechnol. 2020, 8, 1037. [Google Scholar] [CrossRef]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904. [Google Scholar] [CrossRef] [Green Version]
- Koralli, P.; Mouzakis, D.E. Advances in Wearable Chemosensors. Chemosensors 2021, 9, 99. [Google Scholar] [CrossRef]
- Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Methods Programs Biomed. 2012, 108, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; Al Alamin, M.A.; Hossain, M.S.; Hossain, E. Security and Privacy Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2022, 3, 251–281. [Google Scholar] [CrossRef]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, L. Optimization of the Medical Service Consultation System Based on the Artificial Intelligence of the Internet of Things. IEEE Access 2021, 9, 98261–98274. [Google Scholar] [CrossRef]
- Morales, A.S.; de Oliveira Ourique, F.; Morás, L.D.; Cazella, S.C. Exploring Interpretable Machine Learning Methods and Biomarkers to Classifying Occupational Stress of the Health Workers. In Machine Learning for Smart Environments/Cities. Intelligent Systems Reference Library; Marques, G., González-Briones, A., Molina López, J.M., Eds.; Springer: Cham, Switzerland, 2022; Volume 121. [Google Scholar] [CrossRef]
- Muaremi, A.; Arnrich, B.; Tröster, G. Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep. BioNanoScience 2013, 3, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles published between 1 September 2016 and 30 September 2021 | Duplicate articles |
Articles with implementation results | Articles that present systematic reviews or systematic mappings |
Articles published in journals and peer reviewed | Articles that do not allow open access |
Articles available in their full version | Not qualifying as an article, although being classified as such in a journal (editorials, book reviews, etc.) |
Articles that describe results related to stress management via smartwatches | Articles outside the scope of the search |
Ref. | Type of Stress | Analyzed Information | Data Collection Time |
---|---|---|---|
[6] | Stress based on hormone identification | Cortisol | 4 days |
[10] | Stress based on the identification of emotions | Physiological signs | Data from 4 datasets |
[20] | Occupational stress | Physiological signs | Data from a dataset |
[21] | Stress in academic and cognitive activities | Physiological signs | 50–70 min |
[22] | Stress in random activities | Physiological signs | 120–164 min |
[23] | Occupational stress | Physiological signs | 29 days |
[25] | Stress in random activities | Physiological signs | 7 days |
[26] | Stress in academic and cognitive activities | Physiological signs | Not identified |
[27] | Stress in academic and cognitive activities | Physiological signs | 50 min |
[28] | Stress in academic and cognitive activities | Physiological signs | Data from two datasets |
Ref. | Communication Protocols | Type of Sensor | Biomarkers | ML or DL Techniques | Metrics Employed | Stress Level |
---|---|---|---|---|---|---|
[6] | Not informed | CortiWatch | Cortisol | No | Not applicable | 2 levels |
[10] | Not informed | Chronoamperometry | ECG, BVP, EDA, EMG, ST, Oxy, triaxial acceleration | FCN; RESNET MLP; Time-CNN; MDCNN STRESNET; CNN-LSTM; MLP-LSTM; Inceptiontime | Accuracy and other metrics WESAD: Fully Convolutional Network: 79% | 2 levels |
[20] | Not informed | Empatica E4 | ACC, ST, BVP, EDA | NB; SVM; NN; KNN; LR; RF; DT | Accuracy | 2 levels |
[21] | Bluetooth | Device and chest-worn RespiBAN | HRV, ACC, ST, GSR | SVM, DT, KNN, RF, NB, ZeroR | Accuracy | 3 levels |
[22] | Bluetooth | Empatica E4 | HRV, ST | RL | Accuracy | 2 levels |
[23] | Bluetooth | Wrist-worn | HRV, PPG, EDA | No | Not applicable | 4 levels |
[25] | Bluetooth | Device and chest-worn RespiBAN | HRV, EDA | MLP, RF, KNN, SVM, LR | Accuracy | 3 levels |
[26] | Not informed | Wearable wristbands with accelerometer and unspecified brand | GSR, ACC, ST | CNN | Accuracy | 5 emotions levels |
[27] | Bluetooth | Empatica E4 | ECG, PPG, GSR | KNN, SVM, NB Weka LIBSVM | Accuracy | 2 levels |
[28] | Bluetooth | Empatica E4 | HRV, GSR, ACC, ST | DT, RF, NB, KNN, LR, Bagging using DT, AdaBoost, XGB, MLP | Accuracy | Not mentioned |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, A.; Barbosa, M.; Morás, L.; Cazella, S.C.; Sgobbi, L.F.; Sene, I.; Marques, G. Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review. Sensors 2022, 22, 6633. https://doi.org/10.3390/s22176633
Morales A, Barbosa M, Morás L, Cazella SC, Sgobbi LF, Sene I, Marques G. Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review. Sensors. 2022; 22(17):6633. https://doi.org/10.3390/s22176633
Chicago/Turabian StyleMorales, Analúcia, Maria Barbosa, Laura Morás, Silvio César Cazella, Lívia F. Sgobbi, Iwens Sene, and Gonçalo Marques. 2022. "Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review" Sensors 22, no. 17: 6633. https://doi.org/10.3390/s22176633
APA StyleMorales, A., Barbosa, M., Morás, L., Cazella, S. C., Sgobbi, L. F., Sene, I., & Marques, G. (2022). Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review. Sensors, 22(17), 6633. https://doi.org/10.3390/s22176633