The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Console Surgical Robots
3.2. Automatic vs. Autonomous Actions
3.3. Computer Vision (CV)
3.4. Machine Learning (ML), Deep Learning (DL) and Computer Vision (CV)
3.5. Detecting and Classification of Objects in Images
3.6. Current Optics Used in Minimally Invasive Surgery
3.7. Semantic Segmentation
3.8. Instance/Video/Surgical Segmentation
3.9. Navigation, Augmented Reality (AR) and Mixed Reality (MR)
4. Challenges and Open Areas of Research in CV and Artificial Intelligence Surgery
4.1. Dexemes/Surgemes/Situation Awareness
4.2. Phase Recognition
4.3. Robotic-Assisted Surgery and Autonomous Actions
Haptics vs. Audio-Haptics
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gumbs, A.A.; Perretta, S.; d’Allemagne, B.; Chouillard, E. What is Artificial Intelligence Surgery? Artif. Intell. Surg. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Gumbs, A.A.; de Simone, B.; Chouillard, E. Searching for a Better Definition of Robotic Surgery: Is It Really Different from Laparoscopy? Mini-Invasive Surg. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Gumbs, A.A.; Frigerio, I.; Spolverato, G.; Croner, R.; Illanes, A.; Chouillard, E.; Elyan, E. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery? Sensors 2021, 21, 5526. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Scaglioni, B.; De Momi, E.; Fiorini, P.; Valdastri, P. Autonomy in Surgical Robotics. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 651–679. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Rozen, G.; Saleh, A.; Vaid, J.; Biton, Y.; Moazzami, K.; Heist, E.K.; Mansour, M.C.; Kaadan, M.I.; Vangel, M.; et al. Catheter Ablation for Cardiac Arrhythmias: Utilization and In-Hospital Complications, 2000 to 2013. JACC Clin. Electrophysiol. 2017, 3, 1240–1248. [Google Scholar] [CrossRef]
- Gumbs, A.A.; Abu-Hilal, M.; Tsai, T.-J.; Starker, L.; Chouillard, E.; Croner, R. Keeping surgeons in the loop: Are handheld robotics the best path towards more autonomous actions? (A comparison of complete vs. handheld robotic hepatectomy for colorectal liver metastases). Artif. Intell. Surg. 2021, 1, 38–51. [Google Scholar] [CrossRef]
- Try, P.; Schöllmann, S.; Wöhle, L.; Gebhard, M. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking. Sensors 2021, 21, 5419. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Takeshita, N.; Hasegawa, H.; Ito, M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann. Gastroenterol. Surg. 2021, 6, 29–36. [Google Scholar] [CrossRef]
- Murillo, P.C.; Moreno, R.J.; Arenas, J.O.P. Comparison between CNN and Haar Classifiers for Surgical Instrumentation Classifi-cation. Contemp. Eng. Sci. 2017, 10, 1351–1363. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Takeshita, N.; Matsuzaki, H.; Takano, H.; Owada, Y.; Enomoto, T.; Oda, T.; Miura, H.; Yamanashi, T.; Watanabe, M.; et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 2019, 34, 4924–4931. [Google Scholar] [CrossRef]
- Jin, Y.; Dou, Q.; Chen, H.; Yu, L.; Qin, J.; Fu, C.-W.; Heng, P.-A. SV-RCNet: Workflow Recognition from Surgical Videos Using Recurrent Convolutional Network. IEEE Trans. Med. Imaging 2017, 37, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Witkowski, E.R.; Stafford, C.; Navarette-Welton, A.J.; Rattner, D.W.; Lillemoe, K.D.; Rus, D.L.; Meireles, O.R. Computer Vision Analysis of Intraoperative Video: Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy. Ann. Surg. 2019, 270, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 15), Montreal, QC, Canada, 7–12 December 2015; MIT Press: Cambridge, MA, USA, 2015; pp. 91–99. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. (Eds.) You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, D.; Corso, J.J.; Guru, K.A. Detection and Localization of Robotic Tools in Robot-Assisted Surgery Videos Using Deep Neural Networks for Region Proposal and Detection. IEEE Trans. Med. Imaging 2017, 36, 1542–1549. [Google Scholar] [CrossRef]
- Clancy, N.T.; Jones, G.; Maier-Hein, L.; Elson, D.; Stoyanov, D. Surgical spectral imaging. Med Image Anal. 2020, 63, 101699. [Google Scholar] [CrossRef]
- Dsouza, A.V.; Lin, H.; Henderson, E.R.; Samkoe, K.S.; Pogue, B.W. Review of fluorescence guided surgery systems: Identification of key performance capabilities beyond indocyanine green imaging. J. Biomed. Opt. 2016, 21, 080901. [Google Scholar] [CrossRef] [PubMed]
- Studier-Fischer, A.; Seidlitz, S.; Sellner, J.; Wiesenfarth, M.; Ayala, L.; Ozdemir, B.; Odenthal, J.; Knödler, S.; Kowalewski, K.F.; Haney, C.M.; et al. Spectral organ fingerprints for intraoperative tissue classification with hyperspectral imaging. bioRxiv 2021. [Google Scholar] [CrossRef]
- Asano, F.; Shinagawa, N.; Ishida, T.; Shindoh, J.; Anzai, M.; Tsuzuku, A.; Oizumi, S.; Morita, S. Virtual Bronchoscopic Navigation Combined with Ultrathin Bronchoscopy. A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2013, 188, 327–333. [Google Scholar] [CrossRef]
- Diez-Ferrer, M.; Morales, A.; Tebé, C.; Cubero, N.; López-Lisbona, R.; Padrones, S.; Aso, S.; Dorca, J.; Gil, D.; Rosell, A.; et al. Ultrathin Bronchoscopy with and without Virtual Bronchoscopic Navigation: Influence of Segmentation on Diagnostic Yield. Respiration 2018, 97, 252–258. [Google Scholar] [CrossRef]
- Laves, M.-H.; Bicker, J.; Kahrs, L.A.; Ortmaier, T. A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 483–492. [Google Scholar] [CrossRef] [Green Version]
- François, T.; Calvet, L.; Zadeh, S.M.; Saboul, D.; Gasparini, S.; Samarakoon, P.; Bourdel, N.; Bartoli, A. Detecting the occluding contours of the uterus to automatise augmented laparoscopy: Score, loss, dataset, evaluation and user study. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1177–1186. [Google Scholar] [CrossRef]
- Madad Zadeh, S.; Francois, T.; Calvet, L.; Chauvet, P.; Canis, M.; Bartoli, A.; Bourdel, N. SurgAI: Deep learning for computerized laparoscopic image understanding in gynaecology. Surg. Endosc. 2020, 34, 5377–5383. [Google Scholar] [CrossRef]
- Mascagni, P.; Fiorillo, C.; Urade, T.; Emre, T.; Yu, T.; Wakabayashi, T.; Felli, E.; Perretta, S.; Swanstrom, L.; Mutter, D.; et al. Formalizing video documentation of the Critical View of Safety in laparoscopic cholecystectomy: A step towards artificial intelligence assistance to improve surgical safety. Surg. Endosc. 2019, 34, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
- Mascagni, P.; Vardazaryan, A.; Alapatt, D.; Urade, T.; Emre, T.; Fiorillo, C.; Pessaux, P.; Mutter, D.; Marescaux, J.; Costamagna, G.; et al. Artificial Intelligence for Surgical Safety: Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning. Ann. Surg. 2022, 275, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Iglovikov, V.; Shvets, A.A. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Shvets, A.A.; Rakhlin, A.; Kalinin, A.A.; Iglovikov, V.I. Automatic Instrument Segmentation in Robot-Assisted Surgery using Deep Learning. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 624–628. [Google Scholar] [CrossRef] [Green Version]
- Kamrul Hasan, S.M.; Linte, C.A. U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and Instance Seg-mentation of Surgical Instruments from Laparoscopic Images. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 7205–7211. [Google Scholar]
- Kurmann, T.; Márquez-Neila, P.; Allan, M.; Wolf, S.; Sznitman, R. Mask then classify: Multi-instance segmentation for surgical instruments. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1227–1236. [Google Scholar] [CrossRef]
- Kong, X.; Jin, Y.; Dou, Q.; Wang, Z.; Wang, Z.; Lu, B.; Dong, E.; Liu, Y.-H.; Sun, D. Accurate instance segmentation of surgical instruments in robotic surgery: Model refinement and cross-dataset evaluation. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1607–1614. [Google Scholar] [CrossRef]
- Angeles-Ceron, J.C.; Ochoa-Ruiz, G.; Chang, L.; Ali, S. Real-time Instance Segmentation of Surgical Instruments using Attention and Multi-scale Feature Fusion. arXiv 2021, arXiv:2111.04911. [Google Scholar]
- Alapatt, D.; Mascagni, P.; Vardazaryan, A.; Garcia, A.; Okamoto, N.; Mutter, D.; Marescaux, J.; Costamagna, G.; Dallemagne, B.; Padoy, N.; et al. Temporally Constrained Neural Networks (TCNN): A framework for semi-supervised video semantic segmentation. arXiv 2021, arXiv:2112.13815. [Google Scholar]
- Gao, J.; Tembine, H. Correlative Mean-Field Filter for Sequential and Spatial Data Processing. In Proceedings of the IEEE International Conference on Computer as a Tool (EUROCON), Ohrid, Macedonia, 6–8 July 2017. [Google Scholar]
- Yeong, D.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021, 21, 2140. [Google Scholar] [CrossRef]
- Chauvet, P.; Collins, T.; Debize, C.; Novais-Gameiro, L.; Pereira, B.; Bartoli, A.; Canis, M.; Bourdel, N. Augmented reality in a tumor resection model. Surg. Endosc. 2017, 32, 1192–1201. [Google Scholar] [CrossRef]
- Bourdel, N.; Chauvet, P.; Calvet, L.; Magnin, B.; Bartoli, A.; Canis, M. Use of Augmented Reality in Gynecologic Surgery to Visualize Adenomyomas. J. Minim. Invasive Gynecol. 2019, 26, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Chauvet, P.; Bourdel, N.; Calvet, L.; Magnin, B.; Teluob, G.; Canis, M.; Bartoli, A. Augmented Reality with Diffusion Tensor Imaging and Tractography during Laparoscopic Myomectomies. J. Minim. Invasive Gynecol. 2019, 27, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Pizarro, D.; Gasparini, S.; Bourdel, N.; Chauvet, P.; Canis, M.; Calvet, L.; Bartoli, A. Augmented Reality Guided Laparoscopic Surgery of the Uterus. IEEE Trans. Med. Imaging 2020, 40, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Bourdel, N.; Collins, T.; Pizarro, D.; Bartoli, A.; Da Ines, D.; Perreira, B.; Canis, M. Augmented reality in gynecologic surgery: Evaluation of potential benefits for myomectomy in an experimental uterine model. Surg. Endosc. 2016, 31, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Özgür, E.; Koo, B.; Le Roy, B.; Buc, E.; Bartoli, A. Preoperative liver registration for augmented monocular laparoscopy using backward–forward biomechanical simulation. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Phutane, P.; Buc, E.; Poirot, K.; Ozgur, E.; Pezet, D.; Bartoli, A.; Le Roy, B. Preliminary trial of augmented reality performed on a laparo-scopic left hepatectomy. Surg. Endosc. 2018, 32, 514–515. [Google Scholar] [CrossRef]
- Le Roy, B.; Ozgur, E.; Koo, B.; Buc, E.; Bartoli, A. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment (with video). J. Visc. Surg. 2019, 156, 261–262. [Google Scholar] [CrossRef]
- Espinel, Y.; Özgür, E.; Calvet, L.; Le Roy, B.; Buc, E.; Bartoli, A. Combining Visual Cues with Interactions for 3D–2D Registration in Liver Laparoscopy. Ann. Biomed. Eng. 2020, 48, 1712–1727. [Google Scholar] [CrossRef]
- Adballah, M.; Espinel, Y.; Calvet, L.; Pereira, B.; Le Roy, B.; Bartoli, A.; Buc, E. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours. Surg. Endosc. 2021, 36, 833–843. [Google Scholar] [CrossRef]
- Pepe, A.; Trotta, G.F.; Mohr-Ziak, P.; Gsaxner, C.; Wallner, J.; Bevilacqua, V.; Egger, J. A Marker-Less Registration Approach for Mixed Reality–Aided Maxillofacial Surgery: A Pilot Evaluation. J. Digit. Imaging 2019, 32, 1008–1018. [Google Scholar] [CrossRef]
- Fink, W.; Tarbell, M.A. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses. Comput. Methods Programs Biomed. 2009, 96, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Noser, P.; Stern, C.; Stucki, P. Automatic path searching for interactive navigation support within virtual medical 3-dimensional objects. Acad. Radiol. 2004, 11, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Athiniotis, S.; Srivatsan, R.A.; Choset, H. Deep Q Reinforcement Learning for Autonomous Navigation of Surgical Snake Robot in Confined Spaces. In Proceedings of the The Hamlyn Symposium on Medical Robotics, London, UK, 23–26 June 2019. [Google Scholar]
- Kassahun, Y.; Yu, B.; Tibebu, A.T.; Stoyanov, D.; Giannarou, S.; Metzen, J.H.; Vander Poorten, E. Surgical robotics beyond enhanced dexterity in-strumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 553–568. [Google Scholar] [CrossRef] [Green Version]
- Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-García, C.F.; Jayne, C.; Sarker, M.K. Computer vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Artif. Intell. Surg. 2022, 2, 24–45. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Guo, Y.; Shen, M.; Yang, G.-Z. Application of artificial intelligence in surgery. Front. Med. 2020, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Karam, L. A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions. In Proceedings of the 26th International Conference on Computer Communication and Networks, Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dosis, A.; Bello, F.; Gillies, D.; Undre, S.; Aggarwal, R.; Darzi, A. Laparoscopic task recognition using Hidden Markov Models. Stud. Health Technol. Inform. 2005, 111, 115–122. [Google Scholar]
- Rosen, J.; Hannaford, B.; Richards, C.; Sinanan, M. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans. Biomed. Eng. 2001, 48, 579–591. [Google Scholar] [CrossRef]
- Richards, C.; Rosen, J.; Hannaford, B.; Pellegrini, C.; Sinanan, M. Skills evaluation in minimally invasive surgery using force/torque signatures. Surg. Endosc. 2000, 14, 791–798. [Google Scholar] [CrossRef]
- Lin, H.C.; Shafran, I.; Murphy, T.E.; Okamura, A.M.; Yuh, D.D.; Hager, G.D. Automatic Detection and Segmentation of Robot-Assisted Surgical Motions. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Palm Springs, CA, USA, 26–29 October 2005; pp. 802–810. [Google Scholar] [CrossRef] [Green Version]
- Reiley, C.; Lin, H.C.; Varadarajan, B.; Vagvolgyi, B.; Khudanpur, S.; Yuh, D.D.; Hager, G.D. Automatic recognition of surgical motions using statistical modeling for capturing variability. In Proceedings of the MMVR, Long Beach, CA, USA, 29 January 2008; Volume 132. [Google Scholar]
- Varadarajan, B.; Reiley, C.; Lin, H.; Khudanpur, S.; Hager, G. Data-Derived Models for Segmentation with Application to Surgical Assessment and Training. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, London, UK, 20–24 September 2009; pp. 426–434. [Google Scholar] [CrossRef] [Green Version]
- Moustris, G.P.; Hiridis, S.C.; Deliparaschos, K.; Konstantinidis, K.M. Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 2011, 7, 375–392. [Google Scholar] [CrossRef]
- Coulson, C.; Taylor, R.; Reid, A.; Griffiths, M.; Proops, D.; Brett, P. An autonomous surgical robot for drilling a cochleostomy: Preliminary porcine trial. Clin. Otolaryngol. 2008, 33, 343–347. [Google Scholar] [CrossRef]
- Chow, D.L.; Jackson, R.C.; Çavuşoğlu, M.C.; Newman, W. A novel vision guided knot-tying method for autonomous robotic surgery. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 504–508. [Google Scholar]
- Ginesi, M.; Meli, D.; Roberti, A.; Sansonetto, N.; Fiorini, P. Autonomous task planning and situation awareness in robotic surgery. In Proceedings of the 2020 IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar]
- Garrow, C.R.; Kowalewski, K.F.; Li, L.; Wagner, M.; Schmidt, M.W.; Engelhardt, S.; Hashimoto, D.A.; Kenngott, H.G.; Bodenstedt, S.; Speidel, S.; et al. Machine Learning for Surgical Phase Recognition: A Systematic Review. Ann. Surg. 2021, 273, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; Rosen, J.; Kapoor, C.; Noakes, M.; Elbert, G.; Treat, M.; Ganous, T.; Hanson, M.; Manak, J.; Hasser, C.; et al. Trauma Pod: A semi-automated telerobotic surgical system. Int. J. Med Robot. Comput. Assist. Surg. 2009, 5, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Hogle, N.J.; Fowler, D.L. Evaluation of Resident Laparoscopic Performance Using Global Operative Assessment of Laparoscopic Skills. J. Am. Coll. Surg. 2007, 204, 308–313. [Google Scholar] [CrossRef]
- Shademan, A.; Decker, R.S.; Opfermann, J.D.; Leonard, S.; Krieger, A.; Kim, P.C.W. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 2016, 8, 337ra64. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Yu, S.; Li, X.; Gong, Y.; Li, H.; Ren, Z.; Xia, Y.; Wang, H.; Zhang, Y.; Yao, W.; et al. Autonomous Robot for Removing Superficial Traumatic Blood. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, A.; Lama, S.; Singh, R.; Hoshyarmanesh, H.; Razmi, M.; Sutherland, G.R. A data-driven performance dashboard for surgical dissection. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Gonzalez, G.T.; Kaur, U.; Rahman, M.; Venkatesh, V.; Sanchez, N.; Hager, G.; Xue, Y.; Voyles, R.; Wachs, J. From the Dexterous Surgical Skill to the Battle-field-A Robotics Exploratory Study. Mil. Med. 2021, 186 (Suppl. S1), 288–294. [Google Scholar] [CrossRef]
- Needham, V.; Camacho, D.; Malcher, F. Initial experience using a handheld fully articulating software-driven laparoscopic needle driver in TAPP inguinal hernia repair. Surg. Endosc. 2021, 35, 3221–3231. [Google Scholar] [CrossRef]
- Rieke, N.; Tombari, F.; Navab, N. Computer Vision and Machine Learning for Surgical Instrument Tracking: Focus: Random Forest-Based Microsurgical Tool Tracking. In Computer Vision for Assistive Healthcare: A Volume in Computer Vision and Pattern Recognition, 1st ed.; Marco, L., Maria Farinella, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 105–126. [Google Scholar]
- Illanes, A.; Boese, A.; Maldonado, I.; Pashazadeh, A.; Schaufler, A.; Navab, N.; Friebe, M. Novel clinical device tracking and tissue event characterization using proximally placed audio signal acquisition and processing. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Chen, C.; Sühn, T.; Kalmar, M.; Maldonado, I.; Wex, C.; Croner, R.; Boese, A.; Friebe, M.; Illanes, A. Texture differentiation using audio signal analysis with robotic interventional instruments. Comput. Biol. Med. 2019, 112, 103370. [Google Scholar] [CrossRef]
- Illanes, A.; Schaufler, A.; Sühn, T.; Boese, A.; Croner, R.; Friebe, M. Surgical audio information as base for haptic feedback in ro-botic-assisted procedures. Curr. Dir. Biomed. Eng. 2020, 6, 1–5. [Google Scholar]
- Mahmoodian, N.; Schaufler, A.; Pashazadeh, A.; Boese, A.; Friebe, M.; Illanes, A. Proximal detection of guide wire perforation using feature extraction from bispectral audio signal analysis combined with machine learning. Comput. Biol. Med. 2019, 107, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Dall’Alba, D.; Foti, S.; Mariani, A.; Chupin, T.; Caldwell, D.G.; Ferrigno, G.; De Momi, E.; Mattos, L.S.; Fiorini, P. Design and Integration of Electrical Bio-impedance Sensing in Surgical Robotic Tools for Tissue Identification and Display. Front. Robot. AI 2019, 6, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumbs, A.A.; Grasso, V.; Bourdel, N.; Croner, R.; Spolverato, G.; Frigerio, I.; Illanes, A.; Abu Hilal, M.; Park, A.; Elyan, E. The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature. Sensors 2022, 22, 4918. https://doi.org/10.3390/s22134918
Gumbs AA, Grasso V, Bourdel N, Croner R, Spolverato G, Frigerio I, Illanes A, Abu Hilal M, Park A, Elyan E. The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature. Sensors. 2022; 22(13):4918. https://doi.org/10.3390/s22134918
Chicago/Turabian StyleGumbs, Andrew A., Vincent Grasso, Nicolas Bourdel, Roland Croner, Gaya Spolverato, Isabella Frigerio, Alfredo Illanes, Mohammad Abu Hilal, Adrian Park, and Eyad Elyan. 2022. "The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature" Sensors 22, no. 13: 4918. https://doi.org/10.3390/s22134918
APA StyleGumbs, A. A., Grasso, V., Bourdel, N., Croner, R., Spolverato, G., Frigerio, I., Illanes, A., Abu Hilal, M., Park, A., & Elyan, E. (2022). The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature. Sensors, 22(13), 4918. https://doi.org/10.3390/s22134918