Are Smart Homes Adequate for Older Adults with Dementia?
Abstract
:1. Introduction
1.1. Contributions
- First, we survey the literature and map the existing works on activity recognition and anomaly detection for OAwDs to the various stages of dementia, based on the cognitive health of the users.
- We point out that activity recognition and anomaly detection lack the capability of detecting transitions between stages of dementia. Using personas proposed in the literature, we justify the necessity of habit recognition for detecting such transitions.
- Finally, we present some research challenges that need to be addressed in order to implement habit recognition in smart homes for OAwDs.
1.2. Outline
2. Dementia
3. Smart Homes for Older Adults with Dementia
4. Activity Recognition in Smart Homes for Older Adults with Dementia
4.1. Activity Recognition for the Pre-Dementia Stage
4.2. Anomaly Detection for the Pre-Dementia Stage
4.3. Activity Recognition for Pre-Dementia to Middle Stage Dementia
4.4. Anomaly Detection for Pre-Dementia to Middle-Stage Dementia
4.5. Activity Recognition for Early- to Middle-Stage Dementia
4.6. Anomaly Detection for Early- to Middle-Stage Dementia
4.7. Activity Recognition for Late-Stage Dementia
5. Habit Recognition for Older Adults with Dementia
Challenges for Implementing Habit Recognition in Smart Homes for OAwDs
6. Related Works
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Dementia. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 26 October 2021).
- WHO. Ageing and Health. 2021. Available online: https://www.who.int/news/item/02-09-2021-world-failing-to-address-dementia-challenge (accessed on 26 October 2021).
- Genet, N.; Boerma, W.G.; Kringos, D.S.; Bouman, A.; Francke, A.L.; Fagerström, C.; Melchiorre, M.G.; Greco, C.; Devillé, W. Home care in Europe: A systematic literature review. BMC Health Serv. Res. 2011, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vreugdenhil, A. ‘Ageing-in-place’: Frontline experiences of intergenerational family carers of people with dementia. Health Sociol. Rev. 2014, 23, 43–52. [Google Scholar] [CrossRef]
- Shu, S.; Woo, B.K. Use of technology and social media in dementia care: Current and future directions. World J. Psychiatry 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Amiribesheli, M.; Benmansour, A.; Bouchachia, A. A review of smart homes in healthcare. J. Ambient. Intell. Humaniz. Comput. 2015, 6, 495–517. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hoey, J.; Nugent, C.D.; Cook, D.J.; Yu, Z. Sensor-based activity recognition. IEEE Trans. Syst. Man. Cybern. Part C 2012, 42, 790–808. [Google Scholar] [CrossRef]
- Ramasamy Ramamurthy, S.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. Wiley Interdiscip. Rev. 2018, 8, e1254. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. Acm Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart homes for elderly healthcare—Recent advances and research challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef] [Green Version]
- Demiris, G.; Rantz, M.J.; Aud, M.A.; Marek, K.D.; Tyrer, H.W.; Skubic, M.; Hussam, A.A. Older adults’ attitudes towards and perceptions of ‘smart home’technologies: A pilot study. Med. Inform. Internet Med. 2004, 29, 87–94. [Google Scholar] [CrossRef]
- Peek, S.T.M.; Aarts, S.; Wouters, E.J.M. Can Smart Home Technology Deliver on the Promise of Independent Living? In Handbook of Smart Homes, Health Care and Well-Being; van Hoof, J., Demiris, G., Wouters, E.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 203–214. [Google Scholar] [CrossRef]
- Moyle, W.; Murfield, J.; Lion, K. The Effectiveness of Smart Home Technologies to Support the Health Outcomes of Community-Dwelling Older Adults Living with Dementia: A Scoping Review. Int. J. Med. Inform. 2021, 153, 104513. [Google Scholar] [CrossRef]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.; Wu, Y.; Prina, M. World Alzheimer Report 2015–The Global Impact of Dementia, an analysis of prevalence, incidence, cost and trends. Alzheimer’s Dis. Int. 2015, 17, 2016. [Google Scholar]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Psychiatry J. 1982, 139, 1136–1139. [Google Scholar]
- Jais, C.; Hignett, S.; Estupinan, Z.; Hogervorst, E. Evidence based dementia personas: Human factors design for people living with dementia. Ergonomics for People with Disabilities; Polak-Sopinska, A., Krolikowski, J., Eds.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; pp. 215–226. [Google Scholar]
- Kristoffersson, A.; Lindén, M. Understanding Users of a Future E-care@ Home System: E-care@ Home Project; Technical Report; School of Science and Technology, Örebro University: Örebro, Sweden, 2017. [Google Scholar]
- Lazarou, I.; Karakostas, A.; Stavropoulos, T.G.; Tsompanidis, T.; Meditskos, G.; Kompatsiaris, I.; Tsolaki, M. A novel and intelligent home monitoring system for care support of elders with cognitive impairment. J. Alzheimer’s Dis. 2016, 54, 1561–1591. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Navarro, R.; Favela, J.; Hoey, J. An ontological representation model to tailor ambient assisted interventions for wandering. In Proceedings of the 2012 AAAI Fall Symposium Series, Arlington, VI, USA, 2–4 November 2012. [Google Scholar]
- McCracken, I.; de la Harpeand, R.; Di Ruvo, M. Developing dementia personas for user centered architectural design considerations in non-specialized contexts. In Proceedings of the Dementia Lab Conference, Eindhoven, The Netherlands, 21–22 November 2019; pp. 48–61. [Google Scholar]
- Rasmussen, J.; Langerman, H. Alzheimer’s disease—Why we need early diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.; Fransquet, P.; Wrigglesworth, J.; Lacaze, P. Phenotypic heterogeneity in dementia: A challenge for epidemiology and biomarker studies. Front. Public Health 2018, 6, 181. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.; Newton, L.; Pritchard, G.; Finch, T.; Brittain, K.; Robinson, L. The provision of assistive technology products and services for people with dementia in the United Kingdom. Dementia 2016, 15, 681–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiribesheli, M.; Bouchachia, H. A tailored smart home for dementia care. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1755–1782. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, S.; Al Machot, F.; Mayr, H.C. A review on applications of activity recognition systems with regard to performance and evaluation. Int. J. Distrib. Sens. Netw. 2016, 12, 1550147716665520. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; McClatchey, R.; Caleb-Solly, P. Tracking changes in user activity from unlabelled smart home sensor data using unsupervised learning methods. Neural Comput. Appl. 2020, 32, 12351–12362. [Google Scholar] [CrossRef] [Green Version]
- Amiribesheli, M.; Bouchachia, A. Smart homes design for people with dementia. In Proceedings of the 2015 International Conference on Intelligent Environments, Prague, Czech Republic, 15–17 July 2015; pp. 156–159. [Google Scholar]
- Orpwood, R.; Gibbs, C.; Adlam, T.; Faulkner, R.; Meegahawatte, D. The design of smart homes for people with dementia—User-interface aspects. Univers. Access Inf. Soc. 2005, 4, 156–164. [Google Scholar] [CrossRef]
- van Dijk, P.T.; Meulenberg, O.G.; Van de Sande, H.J.; Habbema, J.D.F. Falls in dementia patients. Gerontol. 1993, 33, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Arifoglu, D.; Wang, Y.; Bouchachia, A. Detection of Dementia-Related Abnormal Behaviour Using Recursive Auto-Encoders. Sensors 2021, 21, 260. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Crandall, A.S.; Thomas, B.L.; Krishnan, N.C. CASAS: A smart home in a box. Computer 2012, 46, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordóñez, F.; De Toledo, P.; Sanchis, A. Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 2013, 13, 5460–5477. [Google Scholar] [CrossRef]
- van Kasteren, T.L.; Englebienne, G.; Kröse, B.J. Human activity recognition from wireless sensor network data: Benchmark and software. In Activity Recognition in Pervasive Intelligent Environments; Springer: Paris, France, 2011; pp. 165–186. [Google Scholar]
- Kaye, J.A.; Maxwell, S.A.; Mattek, N.; Hayes, T.L.; Dodge, H.; Pavel, M.; Jimison, H.B.; Wild, K.; Boise, L.; Zitzelberger, T.A. Intelligent systems for assessing aging changes: Home-based, unobtrusive, and continuous assessment of aging. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2011, 66, i180–i190. [Google Scholar] [CrossRef]
- Karakostas, A.; Briassouli, A.; Avgerinakis, K.; Kompatsiaris, I.; Tsolaki, M. The dem@ care experiments and datasets: A technical report. arXiv 2016, arXiv:1701.01142. [Google Scholar]
- Enshaeifar, S.; Zoha, A.; Markides, A.; Skillman, S.; Acton, S.T.; Elsaleh, T.; Hassanpour, M.; Ahrabian, A.; Kenny, M.; Klein, S.; et al. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques. PloS ONE 2018, 13, e0195605. [Google Scholar] [CrossRef] [Green Version]
- Köckemann, U.; Alirezaie, M.; Renoux, J.; Tsiftes, N.; Ahmed, M.U.; Morberg, D.; Lindén, M.; Loutfi, A. Open-source data collection and data sets for activity recognition in smart homes. Sensors 2020, 20, 879. [Google Scholar] [CrossRef] [Green Version]
- Feuz, K.D.; Cook, D.J.; Rosasco, C.; Robertson, K.; Schmitter-Edgecombe, M. Automated detection of activity transitions for prompting. IEEE Trans. Hum. Mach. Syst. 2014, 45, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.J.; Schmitter-Edgecombe, M.; Dawadi, P. Analyzing activity behavior and movement in a naturalistic environment using smart home techniques. IEEE J. Biomed. Health Inform. 2015, 19, 1882–1892. [Google Scholar] [CrossRef]
- König, A.; Crispim Junior, C.F.; Derreumaux, A.; Bensadoun, G.; Petit, P.D.; Bremond, F.; David, R.; Verhey, F.; Aalten, P.; Robert, P. Validation of an automatic video monitoring system for the detection of instrumental activities of daily living in dementia patients. J. Alzheimer’S Dis. 2015, 44, 675–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jekel, K.; Damian, M.; Storf, H.; Hausner, L.; Frölich, L. Development of a proxy-free objective assessment tool of instrumental activities of daily living in mild cognitive impairment using smart home technologies. J. Alzheimer’S Dis. 2016, 52, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akl, A.; Taati, B.; Mihailidis, A. Autonomous unobtrusive detection of mild cognitive impairment in older adults. IEEE Trans. Biomed. Eng. 2015, 62, 1383–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, A.R.; Fahad, L.G.; Farhan, A.A.; Abbas, S.; Srivastava, G.; Parizi, R.M.; Khan, M.S. Automated cognitive health assessment in smart homes using machine learning. Sustain. Cities Soc. 2021, 65, 102572. [Google Scholar] [CrossRef]
- Kaye, J.; Mattek, N.; Dodge, H.H.; Campbell, I.; Hayes, T.; Austin, D.; Hatt, W.; Wild, K.; Jimison, H.; Pavel, M. Unobtrusive measurement of daily computer use to detect mild cognitive impairment. Alzheimer’s Dement. 2014, 10, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, R.G.; Ghazanfar, M.A.; Azam, M.A.; Naeem, U.; Rehman, S.U. A performance comparison of machine learning classification approaches for robust activity of daily living recognition. Artif. Intell. Rev. 2019, 52, 357–379. [Google Scholar] [CrossRef]
- Gochoo, M.; Tan, T.H.; Velusamy, V.; Liu, S.H.; Bayanduuren, D.; Huang, S.C. Device-free non-privacy invasive classification of elderly travel patterns in a smart house using PIR sensors and DCNN. IEEE Sens. J. 2017, 18, 390–400. [Google Scholar] [CrossRef]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Helaoui, R. Fine-grained recognition of abnormal behaviors for early detection of mild cognitive impairment. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), St. Louis, MO, USA, 23–27 March 2015; pp. 149–154. [Google Scholar]
- Akl, A.; Snoek, J.; Mihailidis, A. Unobtrusive detection of mild cognitive impairment in older adults through home monitoring. IEEE J. Biomed. Health Inform. 2015, 21, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Akl, A.; Chikhaoui, B.; Mattek, N.; Kaye, J.; Austin, D.; Mihailidis, A. Clustering home activity distributions for automatic detection of mild cognitive impairment in older adults 1. J. Ambient. Intell. Smart Environ. 2016, 8, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Gayathri, K.; Elias, S.; Ravindran, B. Hierarchical activity recognition for dementia care using Markov Logic Network. Pers. Ubiquitous Comput. 2015, 19, 271–285. [Google Scholar] [CrossRef]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Helaoui, R. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 2016, 67, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Cook, D.J.; Krishnan, N.C.; Schmitter-Edgecombe, M. One-class classification-based real-time activity error detection in smart homes. IEEE J. Sel. Top. Signal Process. 2016, 10, 914–923. [Google Scholar] [CrossRef]
- Arifoglu, D.; Bouchachia, A. Activity recognition and abnormal behaviour detection with recurrent neural networks. Procedia Comput. Sci. 2017, 110, 86–93. [Google Scholar] [CrossRef]
- Schinle, M.; Papantonis, I.; Stork, W. Personalization of monitoring system parameters to support ambulatory care for dementia patients. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–6. [Google Scholar]
- Alberdi, A.; Weakley, A.; Schmitter-Edgecombe, M.; Cook, D.J.; Aztiria, A.; Basarab, A.; Barrenechea, M. Smart home-based prediction of multidomain symptoms related to Alzheimer’s disease. IEEE J. Biomed. Health Inform. 2018, 22, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arifoglu, D.; Bouchachia, A. Detection of abnormal behaviour for dementia sufferers using Convolutional Neural Networks. Artif. Intell. Med. 2019, 94, 88–95. [Google Scholar] [CrossRef]
- Arifoglu, D.; Charif, H.N.; Bouchachia, A. Detecting indicators of cognitive impairment via Graph Convolutional Networks. Eng. Appl. Artif. Intell. 2020, 89, 103401. [Google Scholar] [CrossRef]
- Ahamed, F.; Shahrestani, S.; Cheung, H. Internet of things and machine learning for healthy ageing: Identifying the early signs of dementia. Sensors 2020, 20, 6031. [Google Scholar] [CrossRef] [PubMed]
- Vuong, N.K.; Chan, S.; Lau, C.T.; Chan, S.; Yap, P.L.K.; Chen, A. Preliminary results of using inertial sensors to detect dementia-related wandering patterns. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 3703–3706. [Google Scholar]
- Meditskos, G.; Kompatsiaris, I. iKnow: Ontology-driven situational awareness for the recognition of activities of daily living. Pervasive Mob. Comput. 2017, 40, 17–41. [Google Scholar] [CrossRef]
- Urwyler, P.; Stucki, R.; Rampa, L.; Müri, R.; Mosimann, U.P.; Nef, T. Cognitive impairment categorized in community-dwelling older adults with and without dementia using in-home sensors that recognise activities of daily living. Sci. Rep. 2017, 7, 42084. [Google Scholar] [CrossRef] [Green Version]
- Sprint, G.; Cook, D.J.; Fritz, R. Behavioral differences between subject groups identified using smart homes and change point detection. IEEE J. Biomed. Health Inform. 2020, 25, 559–567. [Google Scholar] [CrossRef]
- Bouchard, K.; Bouchard, B.; Bouzouane, A. Spatial recognition of activities for cognitive assistance: Realistic scenarios using clinical data from Alzheimer’s patients. J. Ambient. Intell. Humaniz. Comput. 2014, 5, 759–774. [Google Scholar] [CrossRef]
- Alam, M.A.U.; Roy, N.; Holmes, S.; Gangopadhyay, A.; Galik, E. Automated functional and behavioral health assessment of older adults with dementia. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 140–149. [Google Scholar]
- Varatharajan, R.; Manogaran, G.; Priyan, M.K.; Sundarasekar, R. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 2018, 21, 681–690. [Google Scholar] [CrossRef]
- Meditskos, G.; Plans, P.M.; Stavropoulos, T.G.; Benois-Pineau, J.; Buso, V.; Kompatsiaris, I. Multi-modal activity recognition from egocentric vision, semantic enrichment and lifelogging applications for the care of dementia. J. Vis. Commun. Image Represent. 2018, 51, 169–190. [Google Scholar] [CrossRef]
- Khodabandehloo, E.; Riboni, D. Collaborative trajectory mining in smart-homes to support early diagnosis of cognitive decline. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1194–1205. [Google Scholar] [CrossRef]
- Chikhaoui, B.; Lussier, M.; Gagnon, M.; Pigot, H.; Giroux, S.; Bier, N. Automatic Identification of Behavior Patterns in Mild Cognitive Impairments and Alzheimer’s Disease Based on Activities of Daily Living. In Proceedings of the International Conference on Smart Homes and Health Telematics, Singapore, 10–12 June 2018; pp. 60–72. [Google Scholar]
- Stavropoulos, T.G.; Meditskos, G.; Kontopoulos, E.; Kompatsiaris, I. Multi-sensing monitoring and knowledge-driven analysis for dementia assessment. Int. J. -Health Med. Commun. 2015, 6, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Karakostas, A.; Lazarou, I.; Meditskos, G.; Stavropoulos, T.G.; Kompatsiaris, I.; Tsolaki, M. Sensor-based in-home monitoring of people with dementia using remote web technologies. In Proceedings of the 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL), Thessaloniki, Greece, 19–20 November 2015; pp. 353–357. [Google Scholar]
- Su, C.F.; Fu, L.C.; Chien, Y.W.; Li, T.Y. Activity recognition system for dementia in smart homes based on wearable sensor data. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 463–469. [Google Scholar]
- Lotfi, A.; Langensiepen, C.; Mahmoud, S.M.; Akhlaghinia, M.J. Smart homes for the elderly dementia sufferers: Identification and prediction of abnormal behaviour. J. Ambient. Intell. Humaniz. Comput. 2012, 3, 205–218. [Google Scholar] [CrossRef]
- Gayathri, K.; Easwarakumar, K. Intelligent decision support system for dementia care through smart home. Procedia Comput. Sci. 2016, 93, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Enshaeifar, S.; Zoha, A.; Skillman, S.; Markides, A.; Acton, S.T.; Elsaleh, T.; Kenny, M.; Rostill, H.; Nilforooshan, R.; Barnaghi, P. Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia. PloS ONE 2019, 14, e0209909. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, C.; Fergus, P.; Montanez, C.A.C.; Sikdar, S.; Ball, F.; Kendall, B. Detecting activities of daily living and routine behaviours in dementia patients living alone using smart meter load disaggregation. IEEE Trans. Emerg. Top. Comput. 2020. [Google Scholar] [CrossRef]
- Martino-Saltzman, D.; Blasch, B.B.; Morris, R.D.; McNeal, L.W. Travel behavior of nursing home residents perceived as wanderers and nonwanderers. Gerontologist 1991, 31, 666–672. [Google Scholar] [CrossRef]
- Cook, D.J.; Schmitter-Edgecombe, M. Assessing the quality of activities in a smart environment. Methods Inf. Med. 2009, 48, 480–485. [Google Scholar] [PubMed] [Green Version]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Bulgari, V. From lab to life: Fine-grained behavior monitoring in the elderly’s home. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 342–347. [Google Scholar]
- Cook, D.; Schmitter-Edgecombe, M.; Crandall, A.; Sanders, C.; Thomas, B. Collecting and disseminating smart home sensor data in the CASAS project. In Proceedings of the CHI Workshop on Developing Shared Home Behavior Datasets to Advance HCI and Ubiquitous Computing Research, Boston, MA, USA, 4–9 April 2009; pp. 1–7. [Google Scholar]
- Thompson, M. Occupations, habits, and routines: Perspectives from persons with diabetes. Scand. J. Occup. Ther. 2014, 21, 153–160. [Google Scholar] [CrossRef]
- Little, J.T.; Satlin, A.; Sunderland, T.; Volicer, L. Sundown syndrome in severely demented patients with probable Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 1995, 8, 103–106. [Google Scholar] [CrossRef]
- Meng, L.; Miao, C.; Leung, C. Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing. Multimed. Tools Appl. 2017, 76, 10779–10799. [Google Scholar] [CrossRef]
- Lee, J.; Melo, N. Habit representation based on activity recognition. Sensors 2020, 20, 1928. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Luo, H.; Li, X.; Zhao, Z. A new habit pattern learning scheme in smart home. J. Appl. Sci. Eng. 2016, 19, 83–94. [Google Scholar]
- Lin, J.; Keogh, E.; Wei, L.; Lonardi, S. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov. 2007, 15, 107–144. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Brück, C.C.; Wolters, F.J.; Ikram, M.A.; de Kok, I.M. Heterogeneity in Reports of Dementia Disease Duration and Severity: A Review of the Literature. J. Alzheimer’s Dis. 2021, 84, 1515–1522. [Google Scholar] [CrossRef]
- Islam, M.; Mazumder, M.; Schwabe-Warf, D.; Stephan, Y.; Sutin, A.R.; Terracciano, A. Personality changes with dementia from the informant perspective: New data and meta-analysis. J. Am. Med. Dir. Assoc. 2019, 20, 131–137. [Google Scholar] [CrossRef]
- Chimamiwa, G.; Alirezaie, M.; Banaee, H.; Köckemann, U.; Loutfi, A. Towards habit recognition in smart homes for people with dementia. In Proceedings of the European Conference on Ambient Intelligence, Rome, Italy, 13–15 November 2019; pp. 363–369. [Google Scholar]
- Howedi, A.; Lotfi, A.; Pourabdollah, A. Employing entropy measures to identify visitors in multi-occupancy environments. J. Ambient. Intell. Humaniz. Comput. 2020, 1–14. [Google Scholar] [CrossRef]
- Giaretta, A.; Loutfi, A. On the people counting problem in smart homes: Undirected graphs and theoretical lower-bounds. J. Ambient. Intell. Humaniz. Comput. 2021, 1–13. [Google Scholar] [CrossRef]
- Raad, M.W.; Deriche, M.; Kanoun, O. An RFID-Based Monitoring and Localization System for Dementia Patients. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 1–7. [Google Scholar]
- Zamiri, M.; Sarraipa, J.; Luis-Ferreira, F.; Manus, G.M.; O’brien, P.; Camarinha-Matos, L.M.; Jardim-Goncalves, R. Review of Technology-Supported Multimodal Solutions for People with Dementia. Sensors 2021, 21, 4806. [Google Scholar] [CrossRef] [PubMed]
- van Boekel, L.C.; Wouters, E.J.; Grimberg, B.M.; van der Meer, N.J.; Luijkx, K.G. Perspectives of stakeholders on technology use in the care of community-living older adults with dementia: A systematic literature review. Healthcare 2019, 7, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Goal | Dementia Stage | Users |
---|---|---|---|
[38,39,40,41,42,43,44,45,46] | AR | Pre-dementia | Healthy/MCI |
[30,47,48,49,50,51,52,53,54,55,56,57,58] | AR + AnD | Pre-dementia | Healthy/MCI |
[59,60,61,62] | AR | Pre-dementia/Early/Middle | Healthy/MCI/Dementia |
[63,64,65,66,67,68] | AR + AnD | Pre-dementia/Early/Middle | Healthy/MCI/Dementia |
[69,70,71] | AR | Early/Middle | Dementia |
[18,36,72,73,74,75] | AR + AnD | Early/Middle | Dementia |
— | — | Late | Dementia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimamiwa, G.; Giaretta, A.; Alirezaie, M.; Pecora, F.; Loutfi, A. Are Smart Homes Adequate for Older Adults with Dementia? Sensors 2022, 22, 4254. https://doi.org/10.3390/s22114254
Chimamiwa G, Giaretta A, Alirezaie M, Pecora F, Loutfi A. Are Smart Homes Adequate for Older Adults with Dementia? Sensors. 2022; 22(11):4254. https://doi.org/10.3390/s22114254
Chicago/Turabian StyleChimamiwa, Gibson, Alberto Giaretta, Marjan Alirezaie, Federico Pecora, and Amy Loutfi. 2022. "Are Smart Homes Adequate for Older Adults with Dementia?" Sensors 22, no. 11: 4254. https://doi.org/10.3390/s22114254
APA StyleChimamiwa, G., Giaretta, A., Alirezaie, M., Pecora, F., & Loutfi, A. (2022). Are Smart Homes Adequate for Older Adults with Dementia? Sensors, 22(11), 4254. https://doi.org/10.3390/s22114254