Automatic Detection and Segmentation of Thrombi in Abdominal Aortic Aneurysms Using a Mask Region-Based Convolutional Neural Network with Optimized Loss Functions
Abstract
:1. Introduction
- As thrombi have irregular morphologies, precise segmentation is essential;
- Similar intensity values make distinguishing a thrombus from surrounding tissues challenging;
- Due to the thrombus being obscured by the metal stent graft, it becomes difficult to detect and segment;
- Manual labeling takes a long time, even for expert radiologists, and data are limited.
2. Related Works
3. Materials and Methods
3.1. Structure of Mask R-CNN
3.2. Improvement of Loss Function
4. Results
4.1. Dataset
4.2. 3D Quantitative Metrics for Evaluation
4.3. Experiments
4.4. Thrombus Detection Results
4.5. Thrombus Segmentation Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rissland, P.; Alemu, Y.; Einav, S.; Ricotta, J.; Bluestein, D. Abdominal aortic aneurysm risk of rupture: Patient-specific FSI simulations using anisotropic model. J. Biomech. Eng. 2009, 131, 031001. [Google Scholar] [CrossRef] [PubMed]
- Lederle, F.A. Abdominal aortic aneurysm. Ann. Intern. Med. 2009, 150, ITC5-1. [Google Scholar] [CrossRef] [PubMed]
- Wilmink, A.; Hubbard, C.S.; Day, N.; Quick, C. The incidence of small abdominal aortic aneurysms and the change in normal infrarenal aortic diameter: Implications for screening. Eur. J. Vasc. Endovasc. Surg. 2001, 21, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lederle, F.A.; Johnson, G.R.; Wilson, S.E.; Chute, E.P.; Hye, R.J.; Makaroun, M.S.; Barone, G.W.; Bandyk, D.; Moneta, G.L.; Makhoul, R.G.; et al. The aneurysm detection and management study screening program: Validation cohort and final results. Arch. Intern. Med. 2000, 160, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 2011, 8, 92–102. [Google Scholar] [CrossRef]
- Acosta, S.; Ögren, M.; Bengtsson, H.; Bergqvist, D.; Lindblad, B.; Zdanowski, Z. Increasing incidence of ruptured abdominal aortic aneurysm: A population-based study. J. Vasc. Surg. 2006, 44, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77. [Google Scholar] [CrossRef] [Green Version]
- Fillinger, M.F. Postoperative imaging after endovascular AAA repair. In Seminars in Vascular Surgery; WB Saunders: Philadelphia, PA, USA, 1999; Volume 12, pp. 327–338. [Google Scholar]
- Maiora, J.; Ayerdi, B.; Graña, M. Random forest active learning for AAA thrombus segmentation in computed tomography angiography images. Neurocomputing 2014, 126, 71–77. [Google Scholar] [CrossRef]
- Moxon, J.V.; Parr, A.; Emeto, T.I.; Walker, P.; Norman, P.E.; Golledge, J. Diagnosis and monitoring of abdominal aortic aneurysm: Current status and future prospects. Curr. Probl. Cardiol. 2010, 35, 512–548. [Google Scholar] [CrossRef] [Green Version]
- Duquette, A.A.; Jodoin, P.M.; Bouchot, O.; Lalande, A. 3D segmentation of abdominal aorta from CT-scan and MR images. Comput. Med. Imaging Graph. 2012, 36, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Freiman, M.; Esses, S.J.; Joskowicz, L.; Sosna, J. An iterative model-constrained graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands, 14–17 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 672–675. [Google Scholar]
- Demirci, S.; Lejeune, G.; Navab, N. Hybrid deformable model for aneurysm segmentation. In Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 33–36. [Google Scholar]
- Lalys, F.; Yan, V.; Kaladji, A.; Lucas, A.; Esneault, S. Generic thrombus segmentation from pre-and post-operative CTA. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Siriapisith, T.; Kusakunniran, W.; Haddawy, P. Outer wall segmentation of abdominal aortic aneurysm by variable neighborhood search through intensity and gradient spaces. J. Digit. Imaging 2018, 31, 490–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohios, C.; Kossioris, G.; Papaharilaou, Y. Geometrical methods for level set based abdominal aortic aneurysm thrombus and outer wall 2D image segmentation. Comput. Methods Programs Biomed. 2012, 107, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Claridge, R.; Arnold, S.; Morrison, N.; van Rij, A.M. Measuring abdominal aortic diameters in routine abdominal computed tomography scans and implications for abdominal aortic aneurysm screening. J. Vasc. Surg. 2017, 65, 1637–1642. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1440–1448. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Babin, D.; Pižurica, A.; Velicki, L.; Matić, V.; Galić, I.; Leventić, H.; Zlokolica, V.; Philips, W. Skeletonization method for vessel delineation of arteriovenous malformation. Comput. Biol. Med. 2018, 93, 93–105. [Google Scholar] [CrossRef]
- Babin, D.; Vansteenkiste, E.; Pižurica, A.; Philips, W. Centerline calculation for extracting abdominal aorta in 3-D MRI images. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3982–3985. [Google Scholar]
- Babin, D.; Devos, D.; Pižurica, A.; Westenberg, J.; Vansteenkiste, E.; Philips, W. Robust segmentation methods with an application to aortic pulse wave velocity calculation. Comput. Med. Imaging Graph. 2014, 38, 179–189. [Google Scholar] [CrossRef]
- Babin, D.; Devos, D.; Platiša, L.; Jovanov, L.; Habijan, M.; Leventić, H.; Philips, W. Segmentation of phase-contrast mr images for aortic pulse wave velocity measurements. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Auckland, New Zealand, 10–14 February 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 77–86. [Google Scholar]
- Babin, D.; Vansteenkiste, E.; Pizurica, A.; Philips, W. Segmentation and length measurement of the abdominal blood vessels in 3-D MRI images. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 4399–4402. [Google Scholar]
- de Bruijne, M.; van Ginneken, B.; Viergever, M.A.; Niessen, W.J. Interactive segmentation of abdominal aortic aneurysms in CTA images. Med. Image Anal. 2004, 8, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Macía, I.; Legarreta, J.H.; Paloc, C.; Graña, M.; Maiora, J.; García, G.; Blas, M.D. Segmentation of abdominal aortic aneurysms in CT images using a radial model approach. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Burgos, Spain, 23–26 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 664–671. [Google Scholar]
- Joldes, G.R.; Miller, K.; Wittek, A.; Forsythe, R.O.; Newby, D.E.; Doyle, B.J. BioPARR: A software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Zhou, X.Y.; Li, Q.B.; Riga, C.; Yang, G.Z. Abdominal aortic aneurysm segmentation with a small number of training subjects. arXiv 2018, arXiv:1804.02943. [Google Scholar]
- Hong, H.A.; Sheikh, U. Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning. In Proceedings of the 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Melaka, Malaysia, 4–6 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 242–246. [Google Scholar]
- Wang, D.; Zhang, R.; Zhu, J.; Teng, Z.; Huang, Y.; Spiga, F.; Du, M.H.F.; Gillard, J.H.; Lu, Q.; Liò, P. Neural network fusion: A novel CT-MR aortic aneurysm image segmentation method. In Proceedings of the Medical Imaging 2018: Image Processing; International Society for Optics and Photonics, Houston, TX, USA, 10–15 February 2018; Volume 10574, p. 1057424. [Google Scholar]
- López-Linares, K.; Aranjuelo, N.; Kabongo, L.; Maclair, G.; Lete, N.; Ceresa, M.; García-Familiar, A.; Macía, I.; Ballester, M.A.G. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Med. Image Anal. 2018, 46, 202–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.T.; Brooks, R.; Hahn, S.; Chen, J.; Buch, V.; Kotecha, G.; Andriole, K.P.; Ghoshhajra, B.; Pinto, J.; Vozila, P.; et al. DeepAAA: Clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 723–731. [Google Scholar]
- Nanni, L.; Cuza, D.; Lumini, A.; Loreggia, A.; Brahnam, S. Deep ensembles in bioimage segmentation. arXiv 2021, arXiv:2112.12955. [Google Scholar]
- Dong, B.; Wang, W.; Fan, D.P.; Li, J.; Fu, H.; Shao, L. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. arXiv 2021, arXiv:2108.06932. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Xu, C.; Wang, J.; Yang, W.; Yu, L. Dot Distance for Tiny Object Detection in Aerial Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1192–1201. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Harthun, N.L. Current issues in the treatment of women with abdominal aortic aneurysm. Gend. Med. 2008, 5, 36–43. [Google Scholar] [CrossRef]
- Vardulaki, K.; Walker, N.; Day, N.; Duffy, S.; Ashton, H.; Scott, R. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. J. Br. Surg. 2000, 87, 195–200. [Google Scholar] [CrossRef]
- Tustison, N.J.; Gee, J.C. Introducing Dice, Jaccard, and other label overlap measures to ITK. Insight J. 2009, 2, 707. [Google Scholar] [CrossRef]
- Burt, T.; Button, K.; Thom, H.; Noveck, R.; Munafò, M.R. The Burden of the “False-Negatives” in Clinical Development: Analyses of Current and Alternative Scenarios and Corrective Measures. Clin. Transl. Sci. 2017, 10, 470–479. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Detailed Information |
---|---|
Number of patients | 60 (Unique) |
Number of CTA slice images | 8739 |
Dates of captured images | 2012–2020 |
Number of pieces of equipment | 5 |
Image size | 512 × 512 |
Gender proportion | 76% male; 24% female |
Mean age | 72 years (Male); 78 years (Female) |
Thrombus proportion in all slice images | (SD) |
Network | Precision | Recall | F1 Score |
---|---|---|---|
Smooth L1 [21] | 0.8694 | 0.9581 | 0.9115 |
GIoU [43] | 0.8409 | 0.9491 | 0.8917 |
DIoU [22] | 0.8273 | 0.9701 | 0.893 |
CIoU [22] | 0.8553 | 0.9455 | 0.8981 |
SCIoU (Ours) | 0.8847 | 0.9576 | 0.9197 |
Network | Precision | Recall | F1 Score |
---|---|---|---|
DeepAAA [35] | 0.8813 | 0.9103 | 0.8955 |
DetectNet [34] | 0.8321 | 0.9020 | 0.8656 |
Mask R-CNN [38] | 0.8694 | 0.9581 | 0.9115 |
Mask R-CNN (Ours) | 0.8847 | 0.9576 | 0.9197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, B.; Kim, J.; Lee, S.; Kim, E.; Kim, J.; Jung, Y.; Hwang, H. Automatic Detection and Segmentation of Thrombi in Abdominal Aortic Aneurysms Using a Mask Region-Based Convolutional Neural Network with Optimized Loss Functions. Sensors 2022, 22, 3643. https://doi.org/10.3390/s22103643
Hwang B, Kim J, Lee S, Kim E, Kim J, Jung Y, Hwang H. Automatic Detection and Segmentation of Thrombi in Abdominal Aortic Aneurysms Using a Mask Region-Based Convolutional Neural Network with Optimized Loss Functions. Sensors. 2022; 22(10):3643. https://doi.org/10.3390/s22103643
Chicago/Turabian StyleHwang, Byunghoon, Jihu Kim, Sungmin Lee, Eunyoung Kim, Jeongho Kim, Younhyun Jung, and Hyoseok Hwang. 2022. "Automatic Detection and Segmentation of Thrombi in Abdominal Aortic Aneurysms Using a Mask Region-Based Convolutional Neural Network with Optimized Loss Functions" Sensors 22, no. 10: 3643. https://doi.org/10.3390/s22103643
APA StyleHwang, B., Kim, J., Lee, S., Kim, E., Kim, J., Jung, Y., & Hwang, H. (2022). Automatic Detection and Segmentation of Thrombi in Abdominal Aortic Aneurysms Using a Mask Region-Based Convolutional Neural Network with Optimized Loss Functions. Sensors, 22(10), 3643. https://doi.org/10.3390/s22103643